Subscribe to RSS
DOI: 10.5482/HAMO-17-04-0018
The role of ultralarge multimers in recombinant human von Willebrand factor – a review of physico-and biochemical studies and findings in in vivo models and in humans with von Willebrand disease
Zur Funktion der großen Multimere in rekombinantem humanem von Willebrand Faktor – Ein Review physiko-und biochemischer Studien und von Ergebnissen aus Tiermodellen und klinischen Studien in Patienten mit von Willebrand SyndromPublication History
received:
11 April 2017
accepted:
09 October 2017
Publication Date:
28 December 2017 (online)

Summary
Ultralarge multimers (ULM) of VWF are considered to be the most active with respect to binding to platelets and to subendothelial structures and therefore are of critical importance for the function of VWF in stabilizing the primary hemostatic plug. In contrast to plasma-derived FVIII-VWF concentrates, human rVWF obtained from mammalian cell culture retains the full-spectrum of intact multimers, including ULM, as physiologically formed in the Golgi apparatus and stored in platelet α-granules and endothelial cell Weibel–Palade bodies. In the course of physico and biochemical, functional and animal studies, rVWF exhibited superiority in structure and function compared to pdVWF. These effects seemed to correlate with the multimer size and therefore might be attributed to the presence of ULM in rVWF preparations. The pharmacokinetic (PK), safety and efficacy characteristics seen in preclinical studies were further demonstrated in clinical trials.
Zusammenfassung
Den hochmolekularen Multimeren des VWF wird die höchste Aktivität zugeschrieben, an Thrombozyten und subendotheliale Strukturen zu binden und sind daher von kritischer Relevanz für die hämostatischen Funktionen von VWF bei der Stabilisierung des Thrombus. Im Gegensatz zu allen FVIII/VWF-haltigen Konzentraten, die aus Plasma gewonnen werden, behält humaner rVWF, der aus Säugetierzellkulturen gewonnen wird, ein intaktes Multimerspektrum, welches physiologisch im Golgi Apparat gebildet und in den α-Granula der Thrombozyten und in Weibel-Palade-Körperchen der Endothelzellen gespeichert wird. Im Rahmen physiko-und biochemischer, funktioneller und tierexperimenteller Studien wurde festgestellt, dass rVWF bessere Eigenschaften in Struktur und Funktion als plasmatischer VWF besitzt. Diese Eigenschaften korrelieren möglicherweise mit der Größe der Multimere und könnten daher durch die hochmolekularen Multimere in rVWF hervorgerufen werden. In den klinischen Studien, die mit rVWF im Vergleich zu einem plasmatischen FVIII-VWF-Konzentrat durchgeführt wurden, konnten die für rVWF anderen pharmakologischen und pharmakokinetischen Eigenschaften als für pdVWF bestätigt werden.
-
References
- 1 Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res 2007; 120 (Suppl. 01) S5-S9.
- 2 Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 1525-1541.
- 3 Lenting PJ, van Mourik JA, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. Blood 1998; 92: 3983-3996.
- 4 Weiss HJ, Sussman II, Hoyer LW. Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand’s disease. J Clin Invest 1977; 60: 390-404.
- 5 Denis CV, Christophe OD, Oortwijn BD, Lenting PJ. Clearance of von Willebrand factor. Thromb Haemost 2008; 99: 271-278.
- 6 Turecek PL, Schrenk G, Rottensteiner H, Varadi K, Bevers E, Lenting P, Ilk N, Sleytr UB, Ehrlich HJ, Schwarz HP. Structure and function of a recombinant von Willebrand factor drug candidate. Semin Thromb Hemost 2010; 36: 510-521.
- 7 Peyvandi F, Garagiola I, Baronciani L. Role of von Willebrand factor in the haemostasis. Blood Transfus 2011; 09 (Suppl. 02) s3-s8.
- 8 Sadler JE. von Willebrand factor assembly and secretion. J Thromb Haemost 2009; 07 (Suppl. 01) 24-27.
- 9 Franchini M, Capra F, Targher G, Montagnana M, Lippi G. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. Thromb J 2007; 05: 14.
- 10 Lynch CJ, Lane DA, Luken BM. Control of VWF A2 domain stability and ADAMTS13 access to the scissile bond of full-length VWF. Blood 2014; 123: 2585-2592.
- 11 Peyvandi F, Mannucci PM, Valsecchi C, Pontiggia S, Farina C, Retzios AD. ADAMTS13 content in plasma-derived factor VIII/von Willebrand factor concentrates. Am J Hematol 2013; 88: 895-898.
- 12 Groeneveld DJ, van BT, Cheung KL, Dirven RJ, Castaman G, Reitsma PH, van VB, Eikenboom J. No evidence for a direct effect of von Willebrand factor’s ABH blood group antigens on von Willebrand factor clearance. J Thromb Haemost 2015; 13: 592-600.
- 13 Turecek PL, Mitterer A, Matthiessen HP, Gritsch H, Varadi K, Siekmann J, Schnecker K, Plaimauer B, Kaliwoda M, Purtscher M. and others. Development of a plasma-and albumin-free recombinant von Willebrand factor. Hamostaseologie 2009; 29 su01: S32-S38.
- 14 Wilate®/Octapharma, see Canadian Product Monograph. 2012.
- 15 Peden A, McCardle L, Head MW, Love S, Ward HJ, Cousens SN, Keeling DM, Millar CM, Hill FG, Ironside JW. Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 2010; 16 (02) 296-304.
- 16 Tan FL, Ginsburg D. What a polyclonal antibody sees in von Willebrand factor. Thromb Res 2008; 121 (04) 519-526.
- 17 Bonazza K, Rottensteiner H, Seyfried B, Schrenk G, Allmaier G, Turecek PL, Friedbacher G. Visualization of a protein-protein interaction at single molecule level by atomic force microscopy. Ana. Bioanal Chem 2014; 406: 1411-1421.
- 18 Bonazza K, Scheichl B, Frank J, Rottensteiner H Schrenk, Schrenk G, Friedbacher G, Turecek PL, Scheiflinger F, Allmaier G. A bio-inspired method for direct measurement of local wall shear rates with micrometer localization using the multimeric protein von Willebrand factor as sensor molecule. Biomicrofluidics 2017; 11: 044117.
- 19 Seyfried BK, Friedbacher G, Rottensteiner H, Schwarz HP, Ehrlich H, Allmaier G, Turecek PL. Comparison of plasma-derived and recombinant von Willebrand factor by atomic force microscopy. Thromb Haemost 2010; 104: 523-530.
- 20 Gogia S, Neelamegham S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology 2015; 52 (5–6): 319-335.
- 21 Mannucci PM, Kempton C, Millar C, Romond E, Shapiro A, Birschmann I, Ragni MV, Gill JC, Yee TT, Klamroth R, Wong WY, Chapman M, Engl W, Turecek PL, Suiter TM, Ewenstein BM. rVWF Ad Hoc Study Group. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood 2013; 122 (05) 648-657.
- 22 Muchitsch EM, Dietrich B, Rottensteiner H, Auer W, Nehrbass D, Gritsch H, Ehrlich HJ, Turecek PL, Schwarz HP. Preclinical testing of human recombinant von Willebrand factor: ADAMTS13 cleavage capacity in animals as criterion for species suitability. Semin Thromb Hemost 2010; 36: 522-528.
- 23 Bonazza K, Rottensteiner H, Schrenk G, Fiedler C, Scheiflinger F, Allmaier G, Turecek PL, Friedbacher G. Ca(2+) concentration-dependent conformational change of FVIII B-domain observed by atomic force microscopy. Anal Bioanal Chem 2015; 407: 6051-6056.
- 24 Kragh T, Napoleone M, Fallah MA, Gritsch H, Schneider MF, Reininger AJ. High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13. Thromb Res 2014; 133: 1079-1087.
- 25 Schwarz HP, Schlokat U, Mitterer A, Varadi K, Gritsch H, Muchitsch EM, Auer W, Pichler L, Dorner F, Turecek PL. Recombinant von Willebrand factor-insight into structure and function through infusion studies in animals with severe von Willebrand disease. Semin Thromb Hemost 2002; 28: 215-226.
- 26 Varadi K, Rottensteiner H, Vejda S, Weber A, Muchitsch EM, Turecek PL, Ehrlich HJ, Scheiflinger F, Schwarz HP. Species-dependent variability of ADAMTS13-mediated proteolysis of human recombinant von Willebrand factor. J Thromb Haemost 2009; 07: 1134-1142.
- 27 Denis C, Methia N, Frenette PS. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 1998; 95 (16) 9524-9529.
- 28 Turecek PL, Gritsch H, Pichler L, Auer W, Fischer B, Mitterer A, Mundt W, Schlokat U, Dorner F, Brinkman HJ, van Mourik JA, Schwarz HP. In vivo characterization of recombinant von Willebrand factor in dogs with von Willebrand disease. Blood 1997; 90: 3555-3567.
- 29 Schwarz HP, Dorner F, Mitterer A, Mundt W, Schlokat U, Pichler L, Turecek PL. Evaluation of recombinant von Willebrand factor in a canine model of von Willebrand disease. Haemophilia 1998; 04 (Suppl. 03) 53-62.
- 30 Fischer BE, Schlokat U, Mitterer A, Reiter M, Mundt W, Turecek PL, Schwarz HP, Dorner F. Structural analysis of recombinant von Willebrand factor produced at industrial scale fermentation of transformed CHO cells co-expressing recombinant furin. FEBS Lett 1995; 375 (03) 259-262.
- 31 Vlot AJ, Koppelman SJ, van den Berg MH, Bouma BN, Sixma JJ. The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood 1995; 85 (11) 3150-3157.
- 32 Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262 (18) 8443-8446.
- 33 Fischer BE, Kramer G, Mitterer A, Grillberger L, Reiter M, Mundt W, Dorner F, Eibl J. Effect of multimerization of human and recombinant von Willebrand factor on platelet aggregation, binding to collagen and binding of coagulation factor VIII. Thromb Res 1996; 84 (01) 55-66.
- 34 Sanders YV, Groeneveld D, Meijer K, Fijnvandraat K, Cnossen MH, van der Bom JG, Coppens M, de Meris J, Laros-van Gorkom BA, Mauser-Bunschoten EP, Leebeek FW, Eikenboom J. WiN study group. von Willebrand factor propeptide and the phenotypic classification of von Willebrand disease. Blood 2015; 125 (19) 3006-3013.
- 35 Michiels JJ, Berneman Z, Gadisseur A, van der Planken M, Schroyens W, van de Velde A, van Vliet H. Classification and characterization of hereditary types 2A,2B, 2C, 2D, 2E, 2M, 2N, and 2U (unclassifiable) von Willebrand disease. Clin Appl Thromb Hemost 2006; 12 (04) 397-420.
- 36 Bendetowicz AV, Morris JA, Wise RJ, Gilbert GE, Kaufman RJ. Binding of factor VIII to von willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers. Blood 1998; 92 (02) 529-538.
- 37 Bonazza K, Rottensteiner H, Schrenk G, Frank J, Allmaier G, Turecek PL, Scheiflinger F, Friedbacher G. Shear-dependant interactions of von Willebrand Factor with Factor VIII and protease ADAMTS 13 demonstrated at a single molecule level by atomic force microscopy. Anal Chem 2015; 87 (20) 10299-10305.