4.4. 38.14 Propargylsilanes (Update 2022)
Buch
Herausgeber: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.
Titel: Knowledge Updates 2022/3
Print ISBN: 9783132452848; Online ISBN: 9783132452862; Buch-DOI: 10.1055/b000000643
1st edition © 2022 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie
Science of Synthesis Knowledge Updates
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Typ: Mehrbändiges Werk

Abstract

This review is an update to the earlier Science of Synthesis coverage of the synthesis of propargylsilanes (Section 4.4.38). It covers the literature published between 2000 and 2021.
Propargylsilanes can be prepared by a rather large array of methods that rely either on reactions involving C–Si bond formation, or on the manipulation of organosilicon-containing precursors to install a C≡C triple bond. For the first strategy, electrophilic silylation of propargyl or allenyl metals by reaction with halosilanes is the most frequently encountered; however, approaches such as propargylic carbene insertions into hydrosilanes, nucleophilic substitution or addition reactions with silylboranes and other silylmetals, or the rearrangement of propargylic silyl ethers have been developed more recently to diversify the silicon source. For the second type of approach, in addition to established transformations such as alkynylation of silylmethyl halides, α-silyloxiranes, or acylsilanes, the allylic substitution of allylic phosphates or elimination reactions of heteroatom-substituted allylsilanes have also recently gained interest. Moreover, a large body of work has been devoted to accessing elaborated propargylsilanes from simple pre-existing propargylsilane units through functionalization at the acetylenic carbon. Given the relevance of propargylsilanes in the context of stereoselective synthesis, there is persistent interest in the preparation of chiral, nonracemic propargysilanes, and significant progress in this area has been achieved over the last two decades, notably through the implementation of asymmetric catalysis.
Schlüsselwörter
propargylsilanes - alkynes - silicon compounds - halosilanes - hydrosilanes - silylmetals - α-silyloxiranes - acylsilanes - transition-metal catalysis - alkynylation reactions- 17 Amakasu T, Sato K, Ohta Y, Kitazawa G, Sato H, Oumiya K, Kawakami Y, Takeuchi T, Kabe Y. J. Organomet. Chem. 2020; 905: 121 006
- 18 Smirnov P, Katan E, Mathew J, Kostenko A, Karni M, Nijs A, Bolm C, Apeloig Y, Marek I. J. Org. Chem. 2014; 79: 12 122
- 20 Pons A, Michalland J, Zawodny W, Chen Y, Tona V, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 17 303
- 37 Wang X, Gao Q, Buevich AV, Yasuda N, Zhang Y, Yang R.-S, Zhang L.-K, Martin GE, Williamson RT. J. Org. Chem. 2019; 84: 10 024
- 40 Sakaguchi K, Kubota S, Akagi W, Ikeda N, Higashino M, Ariyoshi S, Shinada T, Ohfune Y, Nishimura T. Chem. Commun. (Cambridge) 2019; 55: 8635
- 43 Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
- 46 Lehr K, Schulthoff S, Ueda Y, Mariz R, Leseurre L, Gabor B, Fürstner A. Chem.–Eur. J. 2015; 21: 219
- 51 Suto T, Yanagita Y, Nagashima Y, Takikawa S, Kurosu Y, Matsuo N, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 2952
- 52 Reginato G, Mordini A, Meffre P, Tenti A, Valacchi M, Cariou K. Tetrahedron: Asymmetry 2006; 17: 922
- 54 Fager-Jokela E, Muuronen M, Khaizourane H, Vázquez-Romero A, Verdaguer X, Riera A, Helaja J. J. Org. Chem. 2014; 79: 10 999
- 59 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
- 68 Wrona IE, Lowe JT, Turbyville TJ, Johnson TR, Beignet J, Beutler JA, Panek JS. J. Org. Chem. 2009; 74: 1897
- 92 Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I. Angew. Chem. Int. Ed. 2013; 52: 13 717
- 94 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shiada T, Ohfune Y. Org. Lett. 2008; 10: 5449
- 109 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shinada T, Ohfune Y. Tetrahedron 2009; 65: 10 355
- 124 Song L, Feng Q, Wang Y, Ding S, Wu Y.-D, Zhang X, Chung LW, Sun J. J. Am. Chem. Soc. 2019; 141: 17 441
- 127 Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906
- 136 Tietze LF, Völkel L, Wulff C, Weigand B, Bittner C, McGrath P, Johnson K, Schäfer M. Chem.–Eur. J. 2001; 7: 1304
- 138 Miyawaki A, Kikuchi D, Niki M, Manabe Y, Kanematsu M, Yokoe H, Yoshida M, Shishido K. J. Org. Chem. 2012; 77: 8231
- 144 Karstens WFJ, Moolenaar MJ, Rutjes FPJT, Grabowska U, Speckamp WN, Hiemstra H. Tetrahedron Lett. 1999; 40: 8629
- 147 Yoshida A, Akaiwa M, Asakawa T, Hamashima Y, Yokoshima S, Fukuyama T, Kan T. Chem.–Eur. J. 2012; 18: 11 192
- 148 Tong R, Valentine JC, McDonald FE, Cao R, Fang X, Hardcastle KI. J. Am. Chem. Soc. 2007; 129: 1050