Donohoe, T. J. et al.: 2022 Science of Synthesis, 2022/3: Knowledge Updates 2022/3 DOI: 10.1055/sos-SD-104-00807
Knowledge Updates 2022/3

4.4.38.14 Propargylsilanes (Update 2022)

More Information

Book

Editors: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.

Authors: Jackowski, O. ; Marschner, C. ; Ohmiya, H. ; Perez-Luna, A. ; Pinto, D. C. G. A. ; Rocha, D. H. A. ; Santos, C. M. M. ; Silva, V. L. M. ; Sumida, Y. ; Takeda, N. ; Tang, X.; Yoshida, H.

Title: Knowledge Updates 2022/3

Print ISBN: 9783132452848; Online ISBN: 9783132452862; Book DOI: 10.1055/b000000643

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


O. Jackowski; A. Perez-Luna

Abstract

Zoom

This review is an update to the earlier Science of Synthesis coverage of the synthesis of propargylsilanes (Section 4.4.38). It covers the literature published between 2000 and 2021.

Propargylsilanes can be prepared by a rather large array of methods that rely either on reactions involving C–Si bond formation, or on the manipulation of organosilicon-containing precursors to install a C≡C triple bond. For the first strategy, electrophilic silylation of propargyl or allenyl metals by reaction with halosilanes is the most frequently encountered; however, approaches such as propargylic carbene insertions into hydrosilanes, nucleophilic substitution or addition reactions with silylboranes and other silylmetals, or the rearrangement of propargylic silyl ethers have been developed more recently to diversify the silicon source. For the second type of approach, in addition to established transformations such as alkynylation of silylmethyl halides, α-silyloxiranes, or acylsilanes, the allylic substitution of allylic phosphates or elimination reactions of heteroatom-substituted allylsilanes have also recently gained interest. Moreover, a large body of work has been devoted to accessing elaborated propargylsilanes from simple pre-existing propargylsilane units through functionalization at the acetylenic carbon. Given the relevance of propargylsilanes in the context of stereoselective synthesis, there is persistent interest in the preparation of chiral, nonracemic propargysilanes, and significant progress in this area has been achieved over the last two decades, notably through the implementation of asymmetric catalysis.

 
  • 4 Takeda T, Ozaki M, Kuroi S, Tsubouchi A. J. Org. Chem. 2005; 70: 4233
  • 5 Liu Z, Li Q, Yang Y, Bi X. Chem. Commun. (Cambridge) 2017; 53: 2503
  • 6 Liu Z, Huo J, Fu T, Tan H, Ye F, Hossain ML, Wang J. Chem. Commun. (Cambridge) 2018; 54: 11 419
  • 7 Yang L.-L, Ouyang J, Zou H.-N, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6401
  • 8 Courant T, Kumar R, Turcaud S, Micouin L. Org. Lett. 2016; 18: 4818
  • 9 Fleming I, Takaki K, Thomas AP. J. Chem. Soc., Perkin Trans. 1 1987; 2269
  • 15 Mechtler C, Zirngast M, Baumgartner J, Marschner C. Eur. J. Inorg. Chem. 2004; 3254
  • 17 Amakasu T, Sato K, Ohta Y, Kitazawa G, Sato H, Oumiya K, Kawakami Y, Takeuchi T, Kabe Y. J. Organomet. Chem. 2020; 905: 121 006
  • 18 Smirnov P, Katan E, Mathew J, Kostenko A, Karni M, Nijs A, Bolm C, Apeloig Y, Marek I. J. Org. Chem. 2014; 79: 12 122
  • 19 Takeda K, Yamawaki K, Hatakeyama N. J. Org. Chem. 2002; 67: 1786
  • 20 Pons A, Michalland J, Zawodny W, Chen Y, Tona V, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 17 303
  • 21 Ihara E, Tanaka M, Yasuda H, Kanehisa N, Maruo T, Kai Y. J. Organomet. Chem. 2000; 613: 26
  • 22 Simon C, Amatore M, Aubert C, Petit M. Org. Lett. 2015; 17: 844
  • 23 Robertson J, Stafford PM, Bell SJ. J. Org. Chem. 2005; 70: 7133
  • 24 Klein S, Zhang JH, Holler M, Weibel J.-M, Pale P. Tetrahedron 2003; 59: 9793
  • 27 Eberhart AJ, Shrives HJ, Álvarez E, Carrër A, Zhang Y, Procter DJ. Chem.–Eur. J. 2015; 21: 7428
  • 28 Schultz-Fademrecht C, Wibbeling B, Fröhlich R, Hoppe D. Org. Lett. 2001; 3: 1221
  • 29 Otte R, Fröhlich R, Wibbeling B, Hoppe D. Angew. Chem. Int. Ed. 2005; 44: 5492
  • 30 Cordes M. Synthesis 2001; 2470
  • 31 Oba G, Moreira G, Manuel G, Koenig M. J. Organomet. Chem. 2002; 643: 324
  • 34 Todo H, Terao J, Watanabe H, Kuniyasu H, Kambe N. Chem. Commun. (Cambridge) 2008; 1332
  • 35 Zhang T, Zheng S, Kobayashi T, Maekawa H. Org. Lett. 2021; 23: 7129
  • 36 Sakaguchi K, Fujita M, Suzuki H, Higashino M, Ohfune Y. Tetrahedron Lett. 2000; 41: 6589
  • 37 Wang X, Gao Q, Buevich AV, Yasuda N, Zhang Y, Yang R.-S, Zhang L.-K, Martin GE, Williamson RT. J. Org. Chem. 2019; 84: 10 024
  • 40 Sakaguchi K, Kubota S, Akagi W, Ikeda N, Higashino M, Ariyoshi S, Shinada T, Ohfune Y, Nishimura T. Chem. Commun. (Cambridge) 2019; 55: 8635
  • 42 Adachi Y, Kamei N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 4446
  • 43 Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
  • 44 Deng Y, Wei X.-J, Wang X, Sun Y, Noël T. Chem.–Eur. J. 2019; 25: 14 532
  • 46 Lehr K, Schulthoff S, Ueda Y, Mariz R, Leseurre L, Gabor B, Fürstner A. Chem.–Eur. J. 2015; 21: 219
  • 47 Malkov AV, Kysilka O, Edgar M, Kadlčíková A, Kotora M, Kočovský P. Chem.–Eur. J. 2011; 17: 7162
  • 50 Wang L, Prabhudas B, Clive DLJ. J. Am. Chem. Soc. 2009; 131: 6003
  • 51 Suto T, Yanagita Y, Nagashima Y, Takikawa S, Kurosu Y, Matsuo N, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 2952
  • 52 Reginato G, Mordini A, Meffre P, Tenti A, Valacchi M, Cariou K. Tetrahedron: Asymmetry 2006; 17: 922
  • 54 Fager-Jokela E, Muuronen M, Khaizourane H, Vázquez-Romero A, Verdaguer X, Riera A, Helaja J. J. Org. Chem. 2014; 79: 10 999
  • 55 Wender PA, Inagaki F, Pfaffenbach M, Stevens MC. Org. Lett. 2014; 16: 2923
  • 58 Aikawa K, Maruyama K, Nitta J, Hashimoto R, Mikami K. Org. Lett. 2016; 18: 3354
  • 59 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
  • 60 Fukuda K, Miyashita M, Tanino K. Tetrahedron Lett. 2010; 51: 4523
  • 61 Kim K, Okamoto S, Takayama Y, Sato F. Tetrahedron Lett. 2002; 43: 4237
  • 63 Wienhold S, Fritz L, Judt T, Hackl S, Neubauer T, Sauerer B, Bach T. Synthesis 2021; 53: 4246
  • 68 Wrona IE, Lowe JT, Turbyville TJ, Johnson TR, Beignet J, Beutler JA, Panek JS. J. Org. Chem. 2009; 74: 1897
  • 71 Canales E, Gonzalez AZ, Soderquist JA. Angew. Chem. Int. Ed. 2007; 46: 397
  • 73 Li H, Müller D, Guénée L, Alexakis A. Org. Lett. 2012; 14: 5880
  • 74 Li H, Grassi D, Guénée L, Bürgi T, Alexakis A. Chem.–Eur. J. 2014; 20: 16 694
  • 75 Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
  • 76 Gong T.-J, Yu S.-H, Li K, Su W, Lu X, Xiao B, Fu Y. Chem.–Asian J. 2017; 12: 2884
  • 77 Lei G, Zhang H, Chen B, Xu M, Zhang G. Chem. Sci. 2020; 11: 1623
  • 78 Suzuki N, Shimura T, Sakaguchi Y, Masuyama Y. Pure Appl. Chem. 2011; 83: 1781
  • 79 Suzuki N, Hosoya M, Ono T, Mochizuki A, Masuyama Y. J. Organomet. Chem. 2020; 923: 121 410
  • 81 Cunico RF, Zaporowski LF, Rogers M. J. Org. Chem. 1999; 64: 9307
  • 84 Reynolds TE, Bharadwaj AR, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 15 382
  • 88 Barczak NT, Rooke DA, Menard ZA, Ferreira EM. Angew. Chem. Int. Ed. 2013; 52: 7579
  • 89 Unger R, Weisser F, Chinkov N, Stanger A, Cohen T, Marek I. Org. Lett. 2009; 11: 1853
  • 91 Li F.-Q, Zhong S, Lu G, Chan ASC. Adv. Synth. Catal. 2009; 351: 1955
  • 92 Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I. Angew. Chem. Int. Ed. 2013; 52: 13 717
  • 93 Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Angew. Chem. Int. Ed. 2016; 55: 6057
  • 94 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shiada T, Ohfune Y. Org. Lett. 2008; 10: 5449
  • 95 Izzo I, Avallone E, Corte LD, Maulucci N, De Riccardis F. Tetrahedron: Asymmetry 2004; 15: 1181
  • 97 Nagy A, Collard L, Indukuri K, Leyssens T, Riant O. Chem.–Eur. J. 2019; 25: 8705
  • 98 Sabbasani VR, Huang G, Xia Y, Lee D. Chem.–Eur. J. 2015; 21: 17 210
  • 99 Kondo Y, Sasaki M, Kawahata M, Yamaguchi K, Takeda K. J. Org. Chem. 2014; 79: 3601
  • 102 Fleming I, Mwaniki JM. J. Chem. Soc., Perkin Trans. 1 1998; 1237
  • 103 Buckle MJC, Fleming I, Gil S, Pang KLC. Org. Biomol. Chem. 2004; 2: 749
  • 104 Kamachi T, Kuno A, Matsuno C, Okamoto S. Tetrahedron Lett. 2004; 45: 4677
  • 106 Shintani R, Takatsu K, Katoh T, Nishimura T, Hayashi T. Angew. Chem. Int. Ed. 2008; 47: 1447
  • 107 Karstens WFJ, Klomp D, Rutjes FPJT, Hiemstra H. Tetrahedron 2001; 57: 5123
  • 109 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shinada T, Ohfune Y. Tetrahedron 2009; 65: 10 355
  • 110 Karnezis A, O’Hair RAJ, White JM. Organometallics 2011; 30: 5665
  • 111 Liu H, Yu J, Li X, Yan R, Xiao J.-C, Hong R. Org. Lett. 2015; 17: 4444
  • 112 Izquierdo S, Bouvet S, Wu Y, Molina S, Shafir A. Chem.–Eur. J. 2018; 24: 15 517
  • 113 Cho C.-W, Skucas E, Krische MJ. Organometallics 2007; 26: 3860
  • 114 Yazaki R, Kumagai N, Shibasaki M. Chem.–Asian J. 2011; 6: 1778
  • 115 Ji J.-X, Au-Yeung TT.-L, Wu J, Yip CW, Chan ASC. Adv. Synth. Catal. 2004; 346: 42
  • 116 Ji J.-X, Wu J, Chan ASC. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 11 196
  • 117 Shao Z, Chan ASC. Synthesis 2008; 2868
  • 118 Shao Z, Pu X, Li X, Fan B, Chan ASC. Tetrahedron: Asymmetry 2009; 20: 225
  • 119 Wang J, Shao Z, Yu KDWY, Chan ASC. Adv. Synth. Catal. 2009; 351: 1250
  • 122 Ramalho R, Beignet J, Humphries AC, Cox LR. Synthesis 2005; 3389
  • 124 Song L, Feng Q, Wang Y, Ding S, Wu Y.-D, Zhang X, Chung LW, Sun J. J. Am. Chem. Soc. 2019; 141: 17 441
  • 125 Feng Q, Wu H, Li X, Song L, Chung LW, Wu Y.-D, Sun J. J. Am. Chem. Soc. 2020; 142: 13 867
  • 126 Kirkham JD, Leach AG, Row EC, Harrity JPA. Synthesis 2012; 44: 1964
  • 127 Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906
  • 129 Blum A, Hess W, Studer A. Synthesis 2004; 2226
  • 130 Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787
  • 133 Nelson B, Hiller W, Pollex A, Hiersemann M. Org. Lett. 2011; 13: 4438
  • 135 Oppermann G, Stranberg M, Moore HW, Schaumann E, Adiwidjaja G. Synthesis 2010; 2027
  • 136 Tietze LF, Völkel L, Wulff C, Weigand B, Bittner C, McGrath P, Johnson K, Schäfer M. Chem.–Eur. J. 2001; 7: 1304
  • 137 Breman AC, Dijkink J, van Maaseveen JH, Kinderman SS, Hiemstra H. J. Org. Chem. 2009; 74: 6327
  • 138 Miyawaki A, Kikuchi D, Niki M, Manabe Y, Kanematsu M, Yokoe H, Yoshida M, Shishido K. J. Org. Chem. 2012; 77: 8231
  • 139 Mohr P, Imhoff M.-P, Reggiani F. Tetrahedron Lett. 2015; 56: 2262
  • 140 Dabrowski JA, Haeffner F, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 7694
  • 141 Isobe M, Phoosaha W, Saeeng R, Kira K, Yenjai C. Org. Lett. 2003; 5: 4883
  • 142 Saeeng R, Sirion U, Sahakitpichan P, Isobe M. Tetrahedron Lett. 2003; 44: 6211
  • 144 Karstens WFJ, Moolenaar MJ, Rutjes FPJT, Grabowska U, Speckamp WN, Hiemstra H. Tetrahedron Lett. 1999; 40: 8629
  • 147 Yoshida A, Akaiwa M, Asakawa T, Hamashima Y, Yokoshima S, Fukuyama T, Kan T. Chem.–Eur. J. 2012; 18: 11 192
  • 148 Tong R, Valentine JC, McDonald FE, Cao R, Fang X, Hardcastle KI. J. Am. Chem. Soc. 2007; 129: 1050
  • 150 He W, Hu J, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. Int. Ed. 2018; 57: 3806
  • 152 Strom KR, Impastato AC, Moy KJ, Landreth AJ, Snyder JK. Org. Lett. 2015; 17: 2126
  • 154 Martin DBC, Nguyen LQ, Vanderwal CD. J. Org. Chem. 2012; 77: 17