Christmann, M. et al.: 2020 Science of Synthesis: Knowledge Updates 2020/2 DOI: 10.1055/sos-SD-116-01265
Knowledge Updates 2020/2

16.16.5 Phenazines (Update 2020)

More Information

Book

Editors: Christmann, M.; Huang, Z.; Joule, J. A.; Li, C.-J.; Li, J.; Marschner, C.; Petersson, E. J.; Reißig, H.-U.; Schaumann, E.; Terent'ev, A.

Authors: Ambhaikar, N.; Campagne, J.-M.; Celik, I.; Dembitsky, V.; Graham, M.; Holzschneider, K.; Jaschinski, M.; Kipke, W.; Kirsch, S.; Kunz, K.; Leclerc, E.; Li, G.; Li, Z.; Makow, J.; Müller, T.; Ochoa, C. I.; Ramirez y Medina, I.-M. .; Rayner, C. M.; Staubitz, A.; Sun, X.-L.; Szostak, M.; Tambar, U. K.; Tian, T.; Tong, M.; Wang, X.-Y.; Yaremenko, I.; Yoshikai, N.

Title: Knowledge Updates 2020/2

Print ISBN: 9783132435612; Online ISBN: 9783132435636; Book DOI: 10.1055/b000000103

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G.; Nevado, C.; Trost, B. M.; You, S.

Type: Multivolume Edition

 

Abstract

Phenazines are an interesting class of nitrogen-containing heterocycles present in many natural products. This update describes the construction of phenazines through some newer practical synthetic methods that have been reported since the first review on phenazines in Science of Synthesis (Section 16.16). For the most part, standard ways of synthesizing phenazine and its derivatives have employed traditional approaches or their variations along the lines of the Wohl–Aue reaction and the Beirut reaction. The current account focuses on modern synthetic tools to construct the phenazine core and includes some of the newer approaches, with recent key methods that have been developed between 2004 and 2019.

 
  • 1 Beifuss, U., Tietze, M.. Top. Curr. Chem.. 2005; 244: 77
  • 2 Laursen, J. B., Nielsen, J.. Chem. Rev.. 2004; 104: 1663
  • 3 Turner, J. M., Messenger, A. J.. Adv. Microb. Physiol.. 1986; 27: 211
  • 4 Pierson, III L. S., Pierson, E. A.. Appl. Microbiol. Biotechnol.. 2010; 86: 1659
  • 5 Borrero, N. V., Bai, F., Perez, C., Duong, B. Q., Rocca, J. R., Jin, S., Huigens, III R. W.. Org. Biomol. Chem.. 2014; 12: 881
  • 6 Sheng, J., He, R., Xue, J., Wu, C., Qiao, J., Chen, C.. Org. Lett.. 2018; 20: 4458
  • 7 Wang, C., Wang, J., Li, P.-Z., Gao, J., Tan, S. Y., Xiong, W.-W., Hu, B., Lee, P. S., Zhao, Y., Zhang, Q.. Chem.–Asian J.. 2014; 9: 779
  • 8 Ogata, T., Yamamoto, Y., Wada, Y., Murakoshi, K., Kusaba, M., Nakashima, N., Ishida, A., Takamuku, S., Yanagida, S.. J. Phys. Chem.. 1995; 99: 11 916
  • 9 Gu, P.-Y., Zhao, Y., He, J.-H., Zhang, J., Wang, C., Xu, Q.-F., Lu, J.-M., Sun, X. W., Zhang, Q.. J. Org. Chem.. 2015; 80: 3030
  • 10 Shi, J., Chen, J., Chai, Z., Wang, H., Tang, R., Fan, K., Wu, M., Han, H., Qin, J., Peng, T., Li, Q., Li, Z.. J. Mater. Chem.. 2012; 22: 18 830
  • 11 Richard, C. A., Pan, Z., Parthasarathy, A., Arroyave, F. A., Estrada, L. A., Schanze, K. S., Reynolds, J. R.. J. Mater. Chem. A. 2014; 2: 9866
  • 12 Zhang, G., Zhang, H., Wang, X., Li, C., Huang, H., Yin, D.. Molecules. 2011; 16: 6985
  • 13 Browne, S. G., Hogerzeil, L. M.. Lepr. Rev.. 1962; 33: 6
  • 14 Van Rensburg, C. E. J., Van Staden, A. M., Anderson, R.. Cancer Research. 1993; 53: 318
  • 15 Yew, W. W., Chau, C. H.. Monaldi Arch. Chest Dis.. 1996; 51: 394
  • 16 Polson, M. I. J., Howell, S. L., Flood, A. H., Burrell, A. K., Blackman, A. G., Gordon, K. C.. Polyhedron. 2004; 23: 1427
  • 17 Kaafarani, B. R., Lucas, L. A., Wex, B., Jabbour, G. E.. Tetrahedron Lett.. 2007; 48: 5995
  • 21 Vivian, D. L., Hogart, R. M., Belkin, M.. J. Org. Chem.. 1961; 26: 112
  • 23 Pachter, I. J., Kloetzel, M. C.. J. Am. Chem. Soc.. 1952; 74: 971
  • 25 Guirado, A., Cerezo, A., Andreu, R., López Sánchez, J. I., Bautista, D.. Tetrahedron. 2004; 60: 6747
  • 26 De Buyck, L., Vanslembrouck, J., De Kimpe, N., Verhe, R., Schamp, N.. Bull. Soc. Chim. Belg.. 1984; 93: 913
  • 27 Koepf, M., Lee, S. H., Brennan, B. J., Méndez-Hernández, D. D., Batista, V. S., Brudvig, G. W., Crabtree, R. H.. J. Org. Chem.. 2015; 80: 9881
  • 29 Sheldon, R. A., Arends, I. W. C. E., ten Brink, G.-J., Dijksman, A.. Acc. Chem. Res.. 2002; 35: 774
  • 30 Punniyamurthy, T., Velusamy, S., Iqbal, J.. Chem. Rev.. 2005; 105: 2329
  • 32 Stahl, S. S.. Angew. Chem. Int. Ed.. 2004; 43: 3400
  • 33 Do, H.-Q., Daugulis, O.. J. Am. Chem. Soc.. 2007; 129: 12 404
  • 34 Chen, X., Hao, X.-S., Goodhue, C. E., Yu, J.-Q.. J. Am. Chem. Soc.. 2006; 128: 6790
  • 35 Do, H.-Q., Daugulis, O.. J. Am. Chem. Soc.. 2008; 130: 1128
  • 36 Borduas, N., Powell, D. A.. J. Org. Chem.. 2008; 73: 7822
  • 37 Monguchi, D., Fujiwara, T., Furukawa, H., Mori, A.. Org. Lett.. 2009; 11: 1607
  • 38 Zhao, L., Li, C.-J.. Angew. Chem. Int. Ed.. 2008; 47: 7075
  • 39 Strieter, E. R., Bhayana, B., Buchwald, S. L.. J. Am. Chem. Soc.. 2009; 131: 78
  • 40 Yotphan, S., Bergman, R. G., Ellman, J. A.. Org. Lett.. 2009; 11: 1511
  • 41 Ackermann, L., Potukuchi, H. K., Landsberg, D., Vicente, R.. Org. Lett.. 2008; 10: 3081
  • 43 Brasche, G., Buchwald, S. L.. Angew. Chem. Int. Ed.. 2008; 47: 1932
  • 45 Satoh, T., Miura, M.. Chem.–Eur. J.. 2010; 16: 11 212
  • 46 Wencel-Delord, J., Dröge, T., Liu, F., Glorius, F.. Chem. Soc. Rev.. 2011; 40: 4740
  • 47 Song, G., Wang, F., Li, X.. Chem. Soc. Rev.. 2012; 41: 3651
  • 48 Lian, Y., Hummel, J. R., Bergman, R. G., Ellman, J. A.. J. Am. Chem. Soc.. 2013; 135: 12 548
  • 49 Yu, B.-C., Shirai, Y., Tour, J. M.. Tetrahedron. 2006; 62: 10 303
  • 51 Bouffard, J., Swager, T. M.. Macromolecules. 2008; 41: 5559
  • 52 Balicki, R., Cybulski, M., Maciejewski, G.. Synth. Commun.. 2003; 33: 4137
  • 53 Roy, P., Ghorai, B. K.. Beilstein J. Org. Chem.. 2010; 6: 52
  • 54 Muci, A. R., Buchwald, S. L.. Top. Curr. Chem.. 2002; 219: 131
  • 55 Hartwig, J. F., Modern Arene Chemistry. Astruc, D.. Wiley VCH; Weinheim 2002. 107.
  • 56 Wolfe, J. P., Wagaw, S., Marcoux, J.-F., Buchwald, S. L.. Acc. Chem. Res.. 1998; 31: 805
  • 58 Tietze, M., Iglesias, A., Merisor, E., Conrad, J., Klaiber, I., Beifuss, U.. Org. Lett.. 2005; 7: 1549
  • 59 Abken, H.-J., Tietze, M., Brodersen, J., Bäumer, S., Beifuss, U., Deppenmeier, U.. J. Bacteriol.. 1998; 180: 2027
  • 60 Beifuss, U., Tietze, M., Bäumer, S., Deppenmeier, U.. Angew. Chem. Int. Ed.. 2000; 39: 2470
  • 61 Wróbel, Z., Plichta, K., Kwast, A.. Tetrahedron. 2017; 73: 3147
  • 62 Gao, Q., Liu, S., Wu, X., Wu, A.. Org. Lett.. 2014; 16: 4582
  • 63 He, Z., Li, H., Li, Z.. J. Org. Chem.. 2010; 75: 4636
  • 64 Fra, L., Millán, A., Souto, J. A., Muñiz, K.. Angew. Chem. Int. Ed.. 2014; 53: 7349
  • 65 Kumar, S., Mujahid, M., Verma, A. K.. Org. Biomol. Chem.. 2017; 15: 4686
  • 66 Laha, J. K., Tummalapalli, K. S. S., Gupta, A.. Org. Lett.. 2014; 16: 4392
  • 67 Laha, J. K., Tummalapalli, K. S. S., Gupta, A.. Eur. J. Org. Chem.. 2013; 8330
  • 68 Ishizumi, K., Mori, K., Inaba, S., Yamamoto, H.. Chem. Pharm. Bull.. 1975; 23: 2169
  • 69 Black, D. S. C., Rothnie, N. E.. Aust. J. Chem.. 1983; 36: 1149