Bagley, M. et al.: 2018 Science of Synthesis: Knowledge Updates 2018/3 DOI: 10.1055/sos-SD-131-00400
Knowledge Updates 2018/3

31.5.1.5.12 Synthesis of Phenols from Nonaromatic Precursors (Update 2018)

More Information

Book

Editors: Bagley, M.; Banert, K.; Joule, J. A.; Murai, T.; Ramsden, C. A.

Authors: Aitken, R. A.; Glushkov, V.; González-Bello, C.; Kwiecien, H.; Mutoh, Y.; Nakata, M.; Saikawa, Y.; Shklyaev, Y.

Series Editors: Carreira, E. M.; Faul, M.; Fürstner, A. (Editor-in-Chief); Kobayashi, S.; Koch, G.; Molander, G.; Nevado, C.; Trost, B. M.; You, S.

Title: Knowledge Updates 2018/3

Print ISBN: 9783132423213; Online ISBN: 9783132423244; Book DOI: 10.1055/b-006-161208

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

Editors: Bagley, M.; Banert, K.; Joule, J. A.; Murai, T.; Ramsden, C. A.

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 
C. González-Bello

Abstract

The introduction, or chemical modification, of substituents on an existing aromatic ring is probably the most widely employed strategy for the synthesis of phenols, and these methods are summarized in Sections 31.5.1.1 to 31.5.1.4. However, with such transformations, it is sometimes difficult to achieve satisfactory regiocontrol. Furthermore, the required precursors may be expensive, difficult to synthesize, or simply unavailable. The direct construction of a phenol ring from acyclic precursors that already bear the required substituents at the appropriate positions represents a good alternative. This strategy is particularly useful for the synthesis of highly substituted phenols. In this chapter, an update of the reported methods for this approach, which were originally described in Section 31.5.1.5 of Science of Synthesis in 2007, is provided, and includes methods for benzannulation, cycloaromatization, cyclocondensation, and ring-closing metathesis.

 
  • 1 Lam TY, Wang Y-P, Danheiser RL. J. Org. Chem. 2013; 78: 9396
  • 2 Willumstad TP, Boudreau PD, Danheiser RL. J. Org. Chem. 2015; 80: 11 794
  • 3 Mak XY, Crombie AL, Danheiser RL. J. Org. Chem. 2011; 76: 1852
  • 4 Stalling T, Harker WRR, Auvinet A-L, Cornel EJ, Harrity JPA. Chem.–Eur. J. 2015; 21: 2701
  • 5 Auvinet A-L, Harrity JPA. Angew. Chem. Int. Ed. 2011; 50: 2769
  • 6 Dai M, Sarlah D, Yu M, Danishefsky SJ, Jones GO, Houk KN. J. Am. Chem. Soc. 2007; 129: 645
  • 7 Chai G, Fu C, Ma S. Org. Lett. 2012; 14: 4058
  • 8 Karmakar R, Ghorai S, Xia Y, Lee D. Molecules 2015; 20: 15 862
  • 9 Hu Y, Hu Y, Hu Q, Ma J, Lv S, Liu B, Wang S. Chem.–Eur. J. 2017; 23: 4065
  • 10 Cabrera-Pardo JR, Chai DI, Liu S, Mrksich M, Kozmin SA. Nature Chem. 2013; 5: 423
  • 11 Kinbara A, Yamagishi T, Hanzawa N, Kawashima E, Miyaoka H. J. Org. Chem. 2012; 77: 8999
  • 12 Sher M, Dang THT, Ahmed Z, Rashid MA, Fischer C, Langer P. J. Org. Chem. 2007; 72: 6284
  • 13 Mamat C, Büttner S, Trabhardt T, Fischer C, Langer P. J. Org. Chem. 2007; 72: 6273
  • 14 Bunescu A, Reimann S, Lubbe M, Spannenberg A, Langer P. J. Org. Chem. 2009; 74: 5002
  • 15 Karapetyan V, Mkrtchyan S, Hefner J, Fischer C, Langer P. J. Org. Chem. 2010; 75: 809
  • 16 Lubbe M, Gütlein J-P, Reinke H, Langer P. Synlett 2008; 2671
  • 17 Lubbe M, Bendrath F, Trabhardt T, Villinger A, Fischer C, Langer P. Tetrahedron 2013; 69: 5998
  • 18 Shkoor M, Riahi A, Fatunsin O, Reinke H, Fischer C, Langer P. Synthesis 2009; 2223
  • 19 Hashmi ASK, Frost TM, Bats JW. J. Am. Chem. Soc. 2000; 122: 11 553
  • 20 Hashmi ASK, Kurpejović E, Frey W, Bats JW. Tetrahedron 2007; 63: 5879
  • 21 Ota K, Lee SI, Tang J-M, Takachi M, Nakai H, Morimoto T, Sakurai H, Kataoka K, Chatani N. J. Am. Chem. Soc. 2009; 131: 15 203
  • 22 Chen Y, Yan W, Akhmedov NG, Shi X. Org. Lett. 2010; 12: 344
  • 23 Rudolph M, McCreery MQ, Frey W, Hashmi ASK. Beilstein J. Org. Chem. 2011; 7: 794
  • 24 Hashmi ASK, Blanco MC, Kurpejović E, Frey W, Bats JW. Adv. Synth. Catal. 2006; 348: 709
  • 25 Huguet N, Leboeuf D, Echavarren AM. Chem.–Eur. J. 2013; 19: 6581
  • 26 García-García P, Fernández-Rodríguez MA, Aguilar E. Angew. Chem. Int. Ed. 2009; 48: 5534
  • 27 Hara H, Hirano M, Tanaka K. Org. Lett. 2009; 11: 1337
  • 28 Li C, Zhang H, Feng J, Zhang Y, Wang J. Org. Lett. 2010; 12: 3082
  • 29 Evans PA, Burnie AJ, Negru DE. Org. Lett. 2014; 16: 4356
  • 30 Li C, Zeng Y, Zhang H, Feng J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 6413
  • 31 Han X-D, Zhao Y-L, Meng J, Ren C-Q, Liu Q. J. Org. Chem. 2012; 77: 5173
  • 32 Qian J, Yi W, Huang X, Miao Y, Zhang J, Cai C, Zhang W. Org. Lett. 2015; 17: 1090
  • 33 Yi W-B, Huang X, Cai C, Zhang W. Green Chem. 2012; 14: 3185
  • 34 Poudel TN, Lee YR. Org. Lett. 2015; 17: 2050
  • 35 Joshi PR, Nanubolu JB, Menon RS. Org. Lett. 2016; 18: 752
  • 36 Fan X, Yan M, He Y, Shen N, Zhang X. Asian J. Org. Chem. 2015; 4: 368
  • 37 Yoshida K, Takahashi H, Imamoto T. Chem.–Eur. J. 2008; 14: 8246
  • 38 Takahashi H, Yoshida K, Yanagisawa A. J. Org. Chem. 2009; 74: 3632
  • 39 Yoshida K, Nishii K, Kano Y, Wada S, Yanagisawa A. J. Org. Chem. 2014; 79: 4231
  • 40 Yoshida K, Toyoshima T, Imamoto T. Chem. Commun. (Cambridge) 2007; 3774