Diver, S. T. et al.: 2022 Science of Synthesis, 2022/2: Knowledge Updates 2022/2 DOI: 10.1055/sos-SD-146-00034
Knowledge Updates 2022/2

46.14 Conjugated Diene Synthesis by Rearrangement of 1,3-Dienes to 1,3-Dienes

More Information

Book

Editors: Diver, S. T.; Donohoe, T. J.; Joule, J. A.

Authors: Aitken, R. A. ; Behlow, K. T.; Chandra, D. ; Clark, J. R. ; Gupta, S. S. ; Kumar, R. ; Mills, M. D.; Sharma, U. ; Sloane, S. E.

Title: Knowledge Updates 2022/2

Print ISBN: 9783132451933; Online ISBN: 9783132451957; Book DOI: 10.1055/b000000642

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fuerstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The ubiquity of 1,3-dienes in natural products remains an inspiration for developing new reactions to access conjugated diene functionality, with controlled substitution at various positions within the diene. Isomerization of 1,3-dienes has emerged as a unique approach to access highly substituted 1,3-diene functionality in small organic molecules. This review covers classical and modern synthetic strategies to accomplish dienyl isomerization reactions, including the transition-metal-catalyzed and metal-free transformations of 1,3-dienes, to afford more stabilized and sometimes more highly substituted 1,3-diene functionality.

 
  • 1 Taylor RE, Diène CR, Daly EM. Science of Synthesis. 2009; 46: 549 046-00324
  • 2 Diver ST, Clark JR, Comprehensive Organic Synthesis II. Knochel P. Elsevier; Amsterdam 2014. pp 1302–1356.
  • 3 Clark DA, Clark JR, Diver ST. Org. Lett.. 2008; 10: 2055
  • 6 Dinger MB, Mol JC. Eur. J. Inorg. Chem.. 2003; 2827
  • 7 Trnka TM, Morgan JP, Sanford MS, Wilhelm TE, Scholl M, Choi T.-L, Ding S, Day MW, Grubbs RH. J. Am. Chem. Soc.. 2003; 125: 2546
  • 8 Hong SH, Day MW, Grubbs RH. J. Am. Chem. Soc.. 2004; 126: 7414
  • 9 Arisawa M, Terada Y, Takahashi K, Nakagawa M, Nishida A. J. Org. Chem.. 2006; 71: 4255
  • 10 Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc.. 2013; 135: 3327
  • 11 Chen Y, Wang M.-y, Fang S, Wang T, Liu J.-y. Organometallics. 2015; 34: 4864
  • 12 Yamashita K, Fujii Y, Yoshioka S, Aoyama H, Tsujino H, Uno T, Fujioka H, Arisawa M. Chem.–Eur. J.. 2015; 21: 17 491
  • 13 Fischer GM, Daltrozzo E, Zumbusch A. Angew. Chem. Int. Ed.. 2011; 50: 1406
  • 14 Yuan L, Lin W, Zhao S, Gao W, Chen B, He L, Zhu S. J. Am. Chem. Soc.. 2012; 134: 13 510
  • 16 Delgado KR, Youmans DD, Diver ST. Org. Lett.. 2020; 22: 750
  • 17 Crossley SWM, Obradors C, Martinez RM, Shenvi RA. Chem. Rev.. 2016; 116: 8912
  • 18 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc.. 2016; 138: 4962
  • 19 van Rossum AJG, de Bruin AHM, Nivard RJF. J. Chem. Soc., Perkin Trans. 2. 1975; 1036
  • 20 Trost BM, Koester DC, Sharif EU. Chem.–Eur. J.. 2016; 22: 2634
  • 21 Molleti N, Martinez-Erro S, Carretero Cerdán A, Sanz-Marco A, Gomez-Bengoa E, Martín-Matute B. ACS Catal.. 2019; 9: 9134