van Leeuwen, P. W. N. M.: 2014 Science of Synthesis, 2013/8: C-1 Building Blocks in Organic Synthesis 2 DOI: 10.1055/sos-SD-213-00295
C-1 Building Blocks in Organic Synthesis 2

2.6.3 Kharasch Reaction (Atom-Transfer Radical Addition Reactions)

More Information

Book

Editor: van Leeuwen, P. W. N. M.

Authors: Ballini, R.; Belderrain, T. R.; Bruneau, C.; Cokoja, M.; Dong, D.; Fischmeister, C.; Grushin, V. V.; Hu, J.; Ibrahim, H.; Iwasawa, N.; Kaposi, M.; Kühn, F. E.; Lishchynskyi, A.; Merino, P.; Molander, G. A.; Müller, C.; MuÇoz-Molina, J. M.; Neumann, H.; Ni, C.; Nicasio, M. C.; Novák, P.; Nozaki, K.; Ouali, A.; Petrini, M.; Rutjes, F. P. J. T.; Ryu, D.; Schoonen, L.; Schranck, J.; Taillefer, M.; Takahashi, K.; Takaya, J.; te Grotenhuis, C.; Witt, J.; Zhang, N.

Title: C-1 Building Blocks in Organic Synthesis 2

Subtitle: Alkenations, Cross Couplings, Insertions, Substitutions, and Halomethylations

Print ISBN: 9783131751218; Online ISBN: 9783132064515; Book DOI: 10.1055/b-003-125817

Subjects: C-1 Building Blocks in Organic Synthesis

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Since the 1990s, highly active ruthenium and copper catalysts for atom-transfer radical addition (ATRA) reactions have been described and applications of these processes in organic synthesis have been developed. In this chapter are presented some examples of homologation reactions using carbon tetrahalide or haloform polyhalogenated compounds (halogen = Cl, Br) for atom-transfer radical addition for which isolated yields have been reported.

 
  • 1 Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
  • 2 Giese B. Radicals in Organic Synthesis: Formation of Carbon—Carbon Bonds. Pergamon; Oxford 1986
  • 3 Julia M. Acc. Chem. Res. 1971; 4: 386
  • 5 Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
  • 6 Kharasch MS, Engelmann H, Mayo FR. J. Org. Chem. 1937; 2: 288
  • 7 Kharasch MS, Jensen EV, Urry WH. Science (Washington, D. C.) 1945; 102: 128
  • 8 Kharasch MS, Jensen EV, Urry WH. J. Am. Chem. Soc. 1945; 67: 1626
  • 9 Odian G. Principles of Polymerization. Wiley; Hoboken, NJ 2004
  • 10 De Malde M, Minisci F, Pallini U, Volterra E, Quilico A. Chim. Ind. (Milan) 1956; 38: 371
  • 11 Minisci F, Pallini U. Gazz. Chim. Ital. 1961; 91: 1030
  • 12 Minisci F, Galli R. Tetrahedron Lett. 1962; 533
  • 13 Minisci F, Galli R. Chim. Ind. (Milan) 1963; 45: 1400
  • 14 Minisci F, Cecere M, Galli R. Gazz. Chim. Ital. 1963; 93: 1288
  • 15 Minisci F. Gazz. Chim. Ital. 1961; 91: 386
  • 16 Belluš D. Pure Appl. Chem. 1985; 57: 1827
  • 17 Udding JH, Tuijp KCJM, van Zanden MNA, Hiemstra H, Speckamp WN. J. Org. Chem. 1994; 59: 1993
  • 18 Nagashima H, Ozaki N, Ishii M, Seki J, Washiyama M, Itok K. J. Org. Chem. 1993; 58: 464
  • 19 Hájek M, Kotora M, Adámek F, Davis R, Fischer C, Joshu WAC. Collect. Czech. Chem. Commun. 1996; 61: 774
  • 20 Davis R, Stephens K, Hájek M. J. Mol. Catal. 1994; 92: 269
  • 21 Villemin D, Sauvaget F, Hájek M. Tetrahedron Lett. 1994; 35: 3537
  • 22 Kotora M, Hájek M. J. Fluorine Chem. 1993; 64: 101
  • 23 Kotora M, Hájek M, Döbler C. Collect. Czech. Chem. Commun. 1992; 57: 2622
  • 24 Kotora M, Hájek M. J. Mol. Catal. 1992; 77: 51
  • 25 Hájek M, Šilhavý P. Collect. Czech. Chem. Commun. 1983; 48: 1710
  • 26 Matsumoto H, Nakano T, Nagai Y. Tetrahedron Lett. 1973; 5147
  • 27 Bland WJ, Davis R, Durrant JLA. J. Organomet. Chem. 1984; 75: 260
  • 28 Forti L, Ghelfi F, Pagnoni UM. Tetrahedron Lett. 1996; 37: 2077
  • 29 Bellesia F, Forti L, Ghelfi F, Pagnoni UM. Synth. Commun. 1997; 27: 961
  • 30 Forti L, Ghelfi F, Libertini E, Pagnoni UM. Tetrahedron 1997; 53: 17761
  • 31 Jakubowski W, Matyjaszewski K. Angew. Chem. Int. Ed. 2006; 45: 4482
  • 32 Quebatte L, Thommes K, Severin K. J. Am. Chem. Soc. 2006; 128: 7440
  • 33 Eckenhoff WT, Pintauer T. Inorg. Chem. 2007; 46: 5844
  • 34 Thommes K, Icli B, Scopelliti R, Severin K. Chem.–Eur. J. 2007; 13: 6899
  • 35 Pintauer T, Eckenhoff WT, Ricardo C, Balili MNC, Biernesser AB, Noonan SJ, Taylor MJW. Chem.–Eur. J. 2009; 15: 38
  • 36 Muñoz-Molina JM, Belderrain TR, Pérez PJ. Eur. J. Inorg. Chem. 2011; 3155
  • 37 Martin P, Greuter H, Belluš D. J. Am. Chem. Soc. 1979; 101: 5853
  • 38 Eckenhoff WT, Garrity ST, Pintauer T. Eur. J. Inorg. Chem. 2008; 563
  • 39 Ricardo C, Pintauer T. Chem. Commun. (Cambridge) 2009; 3029
  • 40 Muñoz-Molina JM, Belderrain TR, Pérez PJ. Adv. Synth. Catal. 2008; 350: 2365
  • 41 Balili MNC, Pintauer T. Dalton Trans. 2011; 40: 3060
  • 42 Minisci F. Acc. Chem. Res. 1975; 8: 165
  • 43 Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519
  • 44 Matyjaszewski K. Curr. Org. Chem. 2002; 6: 67
  • 45 Delaude L, Demonceau A, Noels AF. Top. Organomet. Chem. 2004; 11: 155
  • 46 Nagashima H, Ruthenium in Organic Synthesis. Murahashi S.-I. Wiley-VCH; Weinheim, Germany 2004
  • 47 Severin K. Curr. Org. Chem. 2006; 10: 217
  • 48 Lee BT, Schrader TO, Martín-Matute B, Kauffman CR, Zhang P, Snapper ML. Tetrahedron 2004; 60: 7391
  • 49 Tallarico JA, Malnick LM, Snapper ML. J. Org. Chem. 1999; 64: 344
  • 50 Nair RP, Pineda-Lanorio JA, Frost BJ. Inorg. Chim. Acta 2012; 380: 96
  • 51 Thommes K, Severin K. Chimia 2010; 64: 188
  • 52 Thommes K, Kiefer G, Scopelliti R, Severin K. Angew. Chem. Int. Ed. 2009; 48: 8115