Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis in Organic Synthesis DOI: 10.1055/sos-SD-215-00136
Biocatalysis in Organic Synthesis 2

2.3.2 Addition of Water to C=C Bonds

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Au, S. K.; Bartsch, S.; Beecher, D.; Boffi, A.; Bommarius, A. S.; Bonamore, A.; Brown, G.; Busto, E.; Clapés, P.; Faber, K.; Fischereder, E.-M.; France, S. P.; Fuchs, C. S.; Geertsema, E. M.; Glieder, A.; Gruber-Khadjawi, M.; Hall, M.; Hanefeld, U.; Hussain, S.; Ilari, A.; Janssen, D. B.; Kaluđerović, G. N.; Kroutil, W.; Lamm, A. S.; Leipold, F.; Lewin, R.; Li, A. T.; Li, Z.; Majerić Elenkov, M.; Micklefield, J.; Moody, T. S.; Mix, S.; Müller, M.; Poelarends, G. J.; Pohl, M.; Pressnitz, D.; Resch, V.; Richter, N.; Rosazza, J. P. N.; Schreckenbach, H. F.; Simon, R. C.; Steiner, K.; Szymański, W.; Thompson, M. L.; Turner, N. J.; Venkitasubramanian, P.; Vogel, A.; Wechsler, C.; Wessjohann, L. A.; Wohlgemuth, R.

Title: Biocatalysis in Organic Synthesis

Print ISBN: 9783131741615; Online ISBN: 9783131975317; Book DOI: 10.1055/b-003-125813

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

While chemists struggle to find efficient methods to perform the asymmetric addition of water, nature employs countless enzymes (called hydratases or hydro-lyases) to perform this reaction using substrates with both activated and nonactivated double bonds. However, compared to the vast number of hydratases involved in metabolic pathways in nature, only a few are described for their use in organic synthesis. Nevertheless, their potential in asymmetric catalysis has been recognized and some hydratases are used on a large scale in industrial processes. Since hydratases perform the addition of water, water is used as both a solvent and a reagent, opening up a very efficient and green route to both secondary and tertiary alcohols. This chapter focuses on hydratases that catalyze interesting reactions and are tested beyond their biochemical characterization.

 
  • 1 Davey PN, Earle MJ, Hamill JT, Katdare SP, Rooney DW, Seddon KR. Green Chem. 2010; 12: 628
  • 2 Wang S, Zhang Z, Chi C, Wu G, Ren J, Wang Z, Huang M, Jiang Y. React. Funct. Polym. 2008; 68: 424
  • 3 Wang X, Sui D, Huang M, Jiang Y. Polym. Adv. Technol. 2006; 17: 163
  • 4 Xue L, Jia B, Tang L, Ji XF, Huang MY, Jiang YY. Polym. Adv. Technol. 2004; 15: 346
  • 5 Hahn H.-D, Dämbkes G, Rupprich N, Bahl H, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
  • 6 Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
  • 7 Sheldon RA, Arends IWCE, Hanefeld U. Green Chemistry and Catalysis. Wiley-VCH; Weinheim, Germany 2007
  • 8 Anderson VE, Ruszczycky MW, Harris ME. Chem. Rev. 2006; 106: 3236
  • 9 Zhang X, Houk KN. Acc. Chem. Res. 2005; 38: 379
  • 10 van der Werf MJ, van den Tweel WJJ, Kamphuis J, Hartmans S, de Bont JAM. Trends Biotechnol. 1994; 12: 95
  • 11 van Leeuwen BNM, van der Wulp AM, Duijnstee I, van Maris AJA, Straathof AJJ. Appl. Microbiol. Biotechnol. 2012; 93: 1377
  • 12 Tokoroyama T. Eur. J. Org. Chem. 2010; 2009
  • 13 Mohrig JR, Moerke KA, Cloutier DL, Lane BD, Person EC, Onasch TB. Science (Washington, D. C.) 1995; 269: 527
  • 14 Beinert H, Kennedy MC, Stout CD. Chem. Rev. 1996; 96: 2335
  • 15 Lauble H, Kennedy MC, Beinert H, Stout CD. J. Mol. Biol. 1994; 237: 437
  • 16 Rose IA, Weaver TM. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3393
  • 17 Mohrig JR. Acc. Chem. Res. 2013; 46: 1407
  • 18 Holden HM, Benning MM, Haller T, Gerlt JA. Acc. Chem. Res. 2001; 34: 145
  • 19 Hanson KR, Rose IA. Acc. Chem. Res. 1975; 8: 1
  • 20 Gerlt JA, Gassman PG. J. Am. Chem. Soc. 1992; 114: 5928
  • 21 Bahnson BJ, Anderson VE, Petsko GA. Biochemistry 2002; 41: 2621
  • 22 Weaver T, Banaszak L. Biochemistry 1996; 35: 13955
  • 23 Weaver T. Acta Crystallogr., Sect. D 2005; 61: 1395
  • 24 Kourist R, Bornscheuer UT. Appl. Microbiol. Biotechnol. 2011; 91: 505
  • 25 Davis EN, Wallen LL, Goodwin JC, Rohwedder WK, Rhodes RA. Lipids 1969; 4: 356
  • 26 Niehaus Jr WG, Kisic A, Torkelson A, Bednarczyk DJ, Schroepfer Jr GJ. J. Biol. Chem. 1970; 245: 3790
  • 27 Wallen LL, Benedict RG, Jackson RW. Arch. Biochem. Biophys. 1962; 99: 249
  • 28 Kisic A, Miura Y, Schroepfer Jr GJ. Lipids 1971; 6: 541
  • 29 Bevers LE, Pinkse MWH, Verhaert PDEM, Hagen WR. J. Bacteriol. 2009; 191: 5010
  • 30 Joo Y.-C, Jeong K.-W, Yeom S.-J, Kim Y.-S, Kim Y, Oh D.-K. Biochimie 2012; 94: 907
  • 31 Gocho S, Tabogami N, Inagaki M, Kawabata C, Komai T. Biosci., Biotechnol., Biochem. 1995; 59: 1571
  • 32 Wanikawa A, Hosoi K, Takise I, Kato T. J. Inst. Brew. 2000; 106: 39
  • 33 Kim B.-N, Joo Y.-C, Kim Y.-S, Kim K.-R, Oh D.-K. Appl. Microbiol. Biotechnol. 2012; 95: 929
  • 34 Kim B.-N, Yeom S.-J, Oh D.-K. Biotechnol. Lett. 2011; 33: 993
  • 35 Joo Y.-C, Seo E.-S, Kim Y.-S, Kim K.-R, Park J.-B, Oh D.-K. J. Biotechnol. 2012; 158: 17
  • 36 Jeon E.-Y, Lee J.-H, Yang K.-M, Joo Y.-C, Oh D.-K, Park J.-B. Process Biochem. 2012; 47: 941
  • 37 Song J.-W, Jeon E.-Y, Song D.-H, Jang H.-Y, Bornscheuer UT, Oh D.-K, Park J.-B. Angew. Chem. 2013; 125: 2594 Angew. Chem. Int. Ed. 2013; 52: 2534
  • 38 Moise AR, Al-Babili S, Wurtzel ET. Chem. Rev. 2014; 114: 164
  • 39 Steiger S, Mazet A, Sandmann G. Arch. Biochem. Biophys. 2003; 414: 51
  • 40 Steiger S, Takaichi S, Sandmann G. J. Biotechnol. 2002; 97: 51
  • 41 Umeno D, Tobias AV, Arnold FH. Microbiol. Mol. Biol. Rev. 2005; 69: 51
  • 42 Sun Z, Shen S, Wang C, Wang H, Hu Y, Jiao J, Ma T, Tian B, Hua Y. Microbiology 2009; 155: 2775
  • 43 Hiseni A, Arends IWCE, Otten LG. Appl. Microbiol. Biotechnol. 2011; 91: 1029
  • 44 Brodkorb D, Gottschall M, Marmulla R, Lüddeke F, Harder J. J. Biol. Chem. 2010; 285: 30436
  • 45 Lüddeke F, Harder J. Z. Naturforsch., C 2011; 66: 409
  • 46 Cleveland TE, Smith DA. Physiol. Plant Pathol. 1983; 22: 129
  • 47 Li D, Chung K.-R, Smith DA, Schardl CL. Mol. Plant-Microbe Interact. 1995; 8: 388
  • 48 Turbek CS, Li D, Choi GH, Schardl CL, Smith DA. Phytochemistry 1990; 29: 2841
  • 49 Turbek CS, Smith DA, Schardl CL. FEMS Microbiol. Lett. 1992; 94: 187
  • 50 Pearlman PS, Chen C, Botes AL, Conradie AVE. US 2013 0 189 753, 2013 Chem. Abstr.. 2013 158 288625
  • 51 Marliere P. WO 2011 076 689, 2011 Chem. Abstr.. 2011 155 121541
  • 52 Cadwallader KR, Braddock RJ, Parish ME, Higgins DP. J. Food Sci. 1989; 54: 1241
  • 53 Maróstica Jr MR, Pastore GM. Food Chem. 2007; 101: 345
  • 54 Bicas JL, Barros FFC, Wagner R, Godoy HT, Pastore GM. J. Ind. Microbiol. Biotechnol. 2008; 35: 1061
  • 55 Bicas JL, de Quadros CP, Néri-Numa IA, Pastore GM. Food Chem. 2010; 120: 452
  • 56 Onken J, Berger RG. J. Biotechnol. 1999; 69: 163
  • 57 Rottava I, Toniazzo G, Cortina PF, Martello E, Grando CE, Lerin LA, Treichel H, Mossi AJ, de Oliveira D, Cansian RL, Antunes OAC, Oestreicher EG. LWT–Food Sci. Technol. 2010; 43: 1128
  • 58 Adams A, Demyttenaere JCR, De Kimpe N. Food Chem. 2003; 80: 525
  • 59 Badee AZM, Helmy SA, Morsy NFS. Food Chem. 2011; 126: 849
  • 60 Tan Q, Day DF. Appl. Microbiol. Biotechnol. 1998; 49: 96
  • 61 Cadwallader KR, Braddock RJ, Parish ME. J. Food Sci. 1992; 57: 241
  • 62 Savithiry N, Cheong T, Oriel P, Biotechnology for Fuels and Chemicals Davison BH, Wyman CE, Finkelstein M. Humana New York 1997; 63–65. 213
  • 63 Bicas JL, Fontanille P, Pastore GM, Larroche C. Process Biochem. 2010; 45: 481
  • 64 Pescheck M, Mirata MA, Brauer B, Krings U, Berger RG, Schrader J. J. Ind. Microbiol. Biotechnol. 2009; 36: 827
  • 65 Prieto SGA, Perea VJA, Ortiz LCC. Vitae 2011; 18: 163
  • 66 Rosner BM, Schink B. J. Bacteriol. 1995; 177: 5767
  • 67 Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, Schink B. Eur. J. Biochem. 1999; 264: 176
  • 68 Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 3073
  • 69 Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PMH. Acta Crystallogr., Sect. F 2005; 61: 299
  • 70 ten Brink F, Schink B, Kroneck PMH. J. Bacteriol. 2011; 193: 1229
  • 71 Liao R.-Z, Thiel W. J. Chem. Theory Comput. 2012; 8: 3793
  • 72 de Bont JAM, Peck M. Arch. Microbiol. 1980; 127: 99
  • 73 Germon JC, Knowles R. Can. J. Microbiol. 1988; 34: 242
  • 74 Kanner D, Bartha R. J. Bacteriol. 1979; 139: 225
  • 75 Span I, Wang K, Wang W, Zhang Y, Bacher A, Eisenreich W, Li K, Schulz C, Oldfield E, Groll M. Nature Commun. 2012; 3: 1042
  • 76 Lamartiniere CA, Braymer HD, Larson AD. Arch. Biochem. Biophys. 1970; 141: 293
  • 77 Yumoto N, Tokushige M. Biochem. Biophys. Res. Commun. 1988; 153: 1236
  • 78 Flint DH, Allen RM. Chem. Rev. 1996; 96: 2315
  • 79 Woods SA, Schwartzbach SD, Guest JR. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1988; 954: 14
  • 80 Ueda Y, Yumoto N, Tokushige M, Fukui K, Ohya-Nishiguchi H. J. Biochem. (Tokyo) 1991; 109: 728
  • 81 Flint DH. Arch. Biochem. Biophys. 1994; 311: 509
  • 82 Flint DH. Biochemistry 1993; 32: 799
  • 83 Flint DH, Emptage MH, Guest JR. Biochemistry 1992; 31: 10331
  • 84 Weaver T, Lees M, Zaitsev V, Zaitseva I, Duke E, Lindley P, McSweeny S, Svensson A, Keruchenko J, Keruchenko I, Gladilin K, Banaszak L. J. Mol. Biol. 1998; 280: 431
  • 85 Yang J, Wang Y, Woolridge EM, Arora V, Petsko GA, Kozarich JW, Ringe D. Biochemistry 2004; 43: 10424
  • 86 Weaver T, Lees M, Banaszak L. Protein Sci. 1997; 6: 834
  • 87 Bressler E, Pines O, Goldberg I, Braun S. Biotechnol. Prog. 2002; 18: 445
  • 88 Yamamoto K, Tosa T, Yamashita K, Chibata I. Eur. J. Appl. Microbiol. Biotechnol. 1976; 3: 169
  • 89 Takata I, Yamamoto K, Tosa T, Chibata I. Enzyme Microb. Technol. 1980; 2: 30
  • 90 Chibata I, Tosa T, Takata I. Trends Biotechnol. 1983; 1: 9
  • 91 Liese A, Seelbach K, Wandrey C. Industrial Biotransformations. Wiley-VCH; Weinheim, Germany 2006
  • 92 Tosa T, Shibatani T. Ann. N. Y. Acad. Sci. 1995; 750: 364
  • 93 Leuchtenberger W, Karrenbauer M, Plöcker U. Ann. N. Y. Acad. Sci. 1984; 434: 78
  • 94 Danneel H.-J, Geiger R. DE 4 430 010C1, 1996 Chem. Abstr.. 1996 124 201642
  • 95 Danneel H.-J, Geiger R. DE 4 424 664C1, 1995 Chem. Abstr.. 1995 123 337561
  • 96 Teipel JW, Hass GM, Hill RL. J. Biol. Chem. 1968; 243: 5684
  • 97 Findeis MA, Whitesides GM. J. Org. Chem. 1987; 52: 2838
  • 98 Sacks W, Jensen CO. J. Biol. Chem. 1951; 192: 231
  • 99 Dreyer J.-L. Eur. J. Biochem. 1985; 150: 145
  • 100 van der Werf MJ, van den Tweel WJJ, Hartmans S. Eur. J. Biochem. 1993; 217: 1011
  • 101 van der Werf MJ, van den Tweel WJJ, Hartmans S. Appl. Environ. Microbiol. 1992; 58: 2854
  • 102 van der Werf MJ, van den Tweel WJJ, Hartmans S. Appl. Environ. Microbiol. 1993; 59: 2823
  • 103 He B.-F, Nakajima-Kambe T, Ozawa T, Nakahara T. Process Biochem. 2000; 36: 407
  • 104 Ueda M, Yamada H, Asano Y. Appl. Microbiol. Biotechnol. 1994; 41: 215
  • 105 Michielsen MJF, Frielink C, Wijffels RH, Tramper J, Beeftink HH. J. Biotechnol. 2000; 79: 13
  • 106 Rao MRR, Subramanian SS, Rahatekar HI, Paranjape SV. Biochem. Biophys. Res. Commun. 1963; 12: 78
  • 107 Subramanian SS, Rao MRR. J. Biol. Chem. 1968; 243: 2367
  • 108 Brock M, Maerker C, Schütz A, Völker U, Buckel W. Eur. J. Biochem. 2002; 269: 6184
  • 109 Holz M, Förster A, Mauersberger S, Barth G. Appl. Microbiol. Biotechnol. 2009; 81: 1087
  • 110 Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ. Nature Struct. Mol. Biol. 2002; 9: 447
  • 111 Serio AW, Sonenshein AL. J. Bacteriol. 2006; 188: 6406
  • 112 Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 11730
  • 113 Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 11735
  • 114 Dickman SR, Cloutier AA. J. Biol. Chem. 1951; 188: 379
  • 115 Tyagi R, Eswaramoorthy S, Burley SK, Raushel FM, Swaminathan S. Biochemistry 2008; 47: 5608
  • 116 Gerlinger E, Hull WE, Rétey J. Tetrahedron 1983; 39: 3523
  • 117 Grueninger D, Treiber N, Ziegler MOP, Koetter JWA, Schulze M.-S, Schulz GE. Science (Washington, D. C.) 2008; 319: 206
  • 118 Kessler D, Rétey J, Schulz GE. J. Mol. Biol. 2004; 342: 183
  • 119 Rétey J. Arch. Biochem. Biophys. 1994; 314: 1
  • 120 Schubert C, Rétey J. Bioorg. Chem. 1994; 22: 368
  • 121 Schubert C, Zhao Y, Shin J.-H, Rétey J. Angew. Chem. 1994; 106: 1331 Angew. Chem. Int. Ed. Engl. 1994; 33: 1279
  • 122 Yamada EW, Jakoby WB. J. Am. Chem. Soc. 1958; 80: 2343
  • 123 Yamada EW, Jakoby WB. J. Biol. Chem. 1959; 234: 941
  • 124 Brecker L, Petschnigg J, Depiné N, Weber H, Ribbons DW. Eur. J. Biochem. 2003; 270: 1393
  • 125 Wang SC, Johnson WH, Whitman CP. J. Am. Chem. Soc. 2003; 125: 14282
  • 126 Poelarends GJ, Serrano H, Johnson WH, Hoffman DW, Whitman CP. J. Am. Chem. Soc. 2004; 126: 15658
  • 127 Almrud JJ, Poelarends GJ, Johnson WH, Serrano H, Hackert ML, Whitman CP. Biochemistry 2005; 44: 14818
  • 128 Poelarends GJ, Serrano H, Johnson WH, Whitman CP. Biochemistry 2005; 44: 9375
  • 129 de Jong RM, Brugman W, Poelarends GJ, Whitman CP, Dijkstra BW. J. Biol. Chem. 2004; 279: 11546
  • 130 Poelarends GJ, Veetil VP, Whitman CP. Cell. Mol. Life Sci. 2008; 65: 3606
  • 131 Poelarends GJ, Whitman CP. Bioorg. Chem. 2004; 32: 376
  • 132 Hiltunen JK, Qin Y.-M. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2000; 1484: 117
  • 133 Agnihotri G, Liu H.-w. Bioorg. Med. Chem. 2003; 11: 9
  • 134 Bhaumik P, Koski MK, Glumoff T, Hiltunen JK, Wierenga RK. Curr. Opin. Struct. Biol. 2005; 15: 621
  • 135 Bell AF, Feng Y, Hofstein HA, Parikh S, Wu J, Rudolph MJ, Kisker C, Whitty A, Tonge PJ. Chem. Biol. 2002; 9: 1247
  • 136 Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T. J. Biol. Chem. 2004; 279: 24666
  • 137 Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T. J. Mol. Biol. 2005; 345: 1157
  • 138 Babbitt PC, Gerlt JA. J. Biol. Chem. 1997; 272: 30591
  • 139 Gerlt JA, Babbitt PC. Curr. Opin. Chem. Biol. 1998; 2: 607
  • 140 Müller-Newen G, Janssen U, Stoffel W. Eur. J. Biochem. 1995; 228: 68
  • 141 Hisano T, Tsuge T, Fukui T, Iwata T, Miki K, Doi Y. J. Biol. Chem. 2003; 278: 617
  • 142 Hasegawa J, Ogura M, Kanema H, Noda N, Kawaharada H, Watanabe K. J. Ferment. Technol. 1982; 60: 501
  • 143 Crosby J. Tetrahedron 1991; 47: 4789
  • 144 Kleber H.-P. FEMS Microbiol. Lett. 1997; 147: 1
  • 145 Jung H, Jung K, Kleber H.-P. Biochim. Biophys. Acta, Lipids Lipid Metab. 1989; 1003: 270
  • 146 Vandecasteele J.-P. Appl. Environ. Microbiol. 1980; 39: 327
  • 147 Zhou BN, Gopalan AS, VanMiddlesworth F, Shieh W.-R, Sih CJ. J. Am. Chem. Soc. 1983; 105: 5925
  • 148 Kulla H, Lehky P. EP 158 194, 1985 Chem. Abstr.. 1986 104 33037
  • 149 Seim H, Kleber H.-P. Appl. Microbiol. Biotechnol. 1988; 27: 538
  • 150 Engemann C, Elssner T, Kleber H.-P. Arch. Microbiol. 2001; 175: 353
  • 151 Alvarez-Vasquez F, Cánovas M, Iborra JL, Torres NV. Biotechnol. Bioeng. 2002; 80: 794
  • 152 Cánovas M, Maiquez JR, Obón JM, Iborra JL. Biotechnol. Bioeng. 2002; 77: 764
  • 153 Cánovas M, Torroglosa T, Iborra JL. Enzyme Microb. Technol. 2005; 37: 300
  • 154 Tian J, Wang Q, Zhang Z. Eur. Food Res. Technol. 2009; 229: 721
  • 155 Kulla HG. Chimia 1991; 45: 81
  • 156 Barghini P, Di Gioia D, Fava F, Ruzzi M. Microb. Cell Fact. 2007; 6: 13
  • 157 Negishi O, Sugiura K, Negishi Y. J. Agric. Food Chem. 2009; 57: 9956
  • 158 Li K, Frost JW. J. Am. Chem. Soc. 1998; 120: 10545
  • 159 Narbad A, Rhodes MJC, Gasson MJ, Walton NJ. WO 9 735 999A2, 1997 Chem. Abstr.. 1997 127 306674
  • 160 Calisti C, Ficca AG, Barghini P, Ruzzi M. Appl. Microbiol. Biotechnol. 2008; 80: 475
  • 161 Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M. Appl. Environ. Microbiol. 2002; 68: 4416
  • 162 Leonard PM, Brzozowski AM, Lebedev A, Marshall CM, Smith DJ, Verma CS, Walton NJ, Grogan G. Acta Crystallogr., Sect. D 2006; 62: 1494
  • 163 Leonard PM, Marshall CM, Dodson EJ, Walton NJ, Grogan G. Acta Crystallogr., Sect. D 2004; 60: 2343
  • 164 Bennett JP, Bertin L, Moulton B, Fairlamb IJS, Brzozowski AM, Walton NJ, Grogan G. Biochem. J. 2008; 414: 281
  • 165 Jin J, Oskam PC, Karmee SK, Straathof AJJ, Hanefeld U. Chem. Commun. (Cambridge) 2010; 46: 8588
  • 166 Jin J, Straathof AJJ, Pinkse MWH, Hanefeld U. Appl. Microbiol. Biotechnol. 2011; 89: 1831
  • 167 Dangel W, Tschech A, Fuchs G. Arch. Microbiol. 1988; 150: 358
  • 168 Dangel W, Tschech A, Fuchs G. Arch. Microbiol. 1989; 152: 273
  • 169 Resch V, Seidler C, Chen B.-S, Degeling I, Hanefeld U. Eur. J. Org. Chem. 2013; 7697
  • 170 Resch V, Jin J, Chen B.-S, Hanefeld U. AMB Express 2014; 4: 30
  • 171 Holland H, Gu J.-X. Biotechnol. Lett. 1998; 20: 1125
  • 172 Chen B.-S, Otten LG, Resch V, Muyzer G, Hanefeld U. Stand. Genomic Sci. 2013; 9: 175
  • 173 Müller M. Chem. Ing. Tech. 2013; 85: 795
  • 174 Wuensch C, Gross J, Steinkellner G, Gruber K, Glueck SM, Faber K. Angew. Chem. 2013; 125: 2349 Angew. Chem. Int. Ed. 2013; 52: 2293
  • 175 Wuensch C, Glueck SM, Gross J, Koszelewski D, Schober M, Faber K. Org. Lett. 2012; 14: 1974
  • 176 Bos J, García-Herraiz A, Roelfes G. Chem. Sci. 2013; 4: 3578
  • 177 Boersma AJ, Coquière D, Geerdink D, Rosati F, Feringa BL, Roelfes G. Nature Chem. 2010; 2: 991
  • 178 Boersma AJ, Megens RP, Feringa BL, Roelfes G. Chem. Soc. Rev. 2010; 39: 2083
  • 179 Oelerich J, Roelfes G. Chem. Sci. 2013; 4: 2013
  • 180 Megens RP, Roelfes G. Chem. Commun. (Cambridge) 2012; 48: 6366
  • 181 Rosati F, Roelfes G. ChemCatChem 2011; 3: 973