Snyder, S. A.: 2016 Science of Synthesis, 2015/4b: Applications of Domino Transformations in Organic Synthesis 2 DOI: 10.1055/sos-SD-220-00098
Applications of Domino Transformations in Organic Synthesis 2

2.1.4 Sigmatropic Shifts and Ene Reactions (Excluding [3,3])

Weitere Informationen

Buch

Herausgeber: Snyder, S. A.

Autoren: Bella, M.; Blond, G.; Boyce, J.; Coldham, I.; Dömling, A.; Donnard, M.; Guerrero, C.; Gulea, M.; Kroon, E.; Moliterno, M.; Neochoritis, C.; Novikov, A.; Porco Jr., J. A.; Renzi, P.; Salvio, R.; Schaumann, E.; Sheikh, N. S.; Song, A.; Sorensen, E. J.; Suffert, J.; Tzitzikas, T.; Wang, W.; West, J.; Yeung, Y.-Y.; Yu, Z. W.; Zakarian, A.

Titel: Applications of Domino Transformations in Organic Synthesis 2

Print ISBN: 9783132211414; Online ISBN: 9783132402218; Buch-DOI: 10.1055/b-003-128260

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Typ: Mehrbändiges Werk

 


Abstract

This chapter features a review and discussion of the domino transformations initiated by ene reactions and sigmatropic rearrangements, particularly focusing on [2,3]-sigmatropic shifts, such as Mislow–Evans and Wittig rearrangements, and [1,n] hydrogen shifts. A variety of examples of these domino processes are reviewed, featuring such follow-up processes to the initial reaction as additional ene reactions or sigmatropic shifts, Diels–Alder cycloaddition, [3 + 2] cycloaddition, electrocyclization, condensation, and radical cyclization. General practical considerations and specific features in the examples of the reported cascade transformation are highlighted. To complete the discussion, uses of these cascade processes in the synthesis of natural products are discussed, demonstrating the rapid assembly of structural complexity that is characteristic of domino processes. Overall, the domino transformations initiated by ene reactions and sigmatropic shifts represent an important subset of domino processes, the study of which is highly valuable for understanding key aspects of chemical reactivity and development of efficient synthetic methods.

 
  • 1 Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
  • 2 Majumdar KC, Nandi RK. Tetrahedron 2013; 69: 6921
  • 3 Rehbein J, Hiersemann M. Synthesis 2013; 45: 1121
  • 4 Clarke ML, France MB. Tetrahedron 2008; 64: 9003
  • 5 Mikami K, Shimizu M. Chem. Rev. 1992; 92: 1021
  • 6 Nakai T, Mikami K. Org. React. (N. Y.) 1994; 46: 105
  • 7 Nakai T, Mikami K. Chem. Rev. 1986; 86: 885
  • 8 Spangler CW. Chem. Rev. 1976; 76: 187
  • 9 Prein M, Adam W. Angew. Chem. Int. Ed. Engl. 1996; 35: 477
  • 10 Rabjohn N. Org. React. (N. Y.) 1976; 24: 261
  • 11 Kabalka GW, Hutchins R, Natale NR, Yang DTC, Broach V. Org. Synth., Coll. Vol. VI 1988; 293
  • 12 Oppolzer W, Snieckus V. Angew. Chem. Int. Ed. Engl. 1978; 17: 476
  • 13 Giguere RJ, Namen AM, Lopez BO, Arepally A, Ramos DE, Majetich G, Defauw J. Tetrahedron Lett. 1987; 28: 6553
  • 14 González I, Pla-Quintana A, Roglans A, Dachs A, Solà M, Parella T, Farjas J, Roura P, Lloveras V, Vidal-Gancedo J. Chem. Commun. (Cambridge) 2010; 46: 2944
  • 15 Robinson JM, Sakai T, Okano K, Kitawaki T, Danheiser RL. J. Am. Chem. Soc. 2010; 132: 11039
  • 16 Sakai T, Danheiser RL. J. Am. Chem. Soc. 2010; 132: 13203
  • 17 Kociolek MG, Johnson RP. Tetrahedron Lett. 1999; 40: 4141
  • 18 Parsons PJ, Waters AJ, Walter DS, Board J. J. Org. Chem. 2007; 72: 1395
  • 19 Saaby S, Baxendale IR, Ley SV. Org. Biomol. Chem. 2005; 3: 3365
  • 20 Griesbeck AG, de Kiff A. Org. Lett. 2013; 15: 2073
  • 21 Snider BB, Deutsch EA. J. Org. Chem. 1982; 47: 745
  • 22 Snider BB, Deutsch EA. J. Org. Chem. 1983; 48: 1822
  • 23 Snider BB, Goldman BE. Tetrahedron 1986; 42: 2951
  • 24 Hakuba H, Kitagaki S, Mukai C. Tetrahedron 2007; 63: 12639
  • 25 Chen H, Wang Z, Zhang Y, Huang Y. J. Org. Chem. 2013; 78: 3503
  • 26 Evans DA, Andrews GC. Acc. Chem. Res. 1974; 7: 147
  • 27 Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
  • 28 Lesuisse D, Canu F, Tric B. Tetrahedron 1994; 50: 8491
  • 29 Sayo N, Kimura Y, Nakai T. Tetrahedron Lett. 1982; 23: 3931
  • 30 Greeves N, Lee W.-M, Barkley JV. Tetrahedron Lett. 1997; 38: 6453
  • 31 Greeves N, Lee W.-M, McLachlan SP, Oakes GH, Purdie M, Bickley JF. Tetrahedron Lett. 2003; 44: 9035
  • 32 Hiersemann M. Eur. J. Org. Chem. 2001; 483
  • 33 Aoyagi S, Makabe M, Shimada K, Takikawa Y, Kabuto C. Tetrahedron Lett. 2007; 48: 4639
  • 34 Braverman S, Cherkinsky M, Meridor D, Sprecher M. Tetrahedron 2010; 66: 1925
  • 35 Braverman S, Pechenick T, Gottlieb HE. Tetrahedron Lett. 2003; 44: 777
  • 36 Braverman S, Kumar EVKS, Cherkinsky M, Sprecher M, Goldberg I. Tetrahedron Lett. 2000; 41: 6923
  • 37 Kitagaki S, Ohdachi K, Katoh K, Mukai C. Org. Lett. 2006; 8: 95
  • 38 de Lera AR, Castro A, Torrado A, López S. Tetrahedron Lett. 1998; 39: 4575
  • 39 Iglesias B, Torrado A, de Lera AR. J. Org. Chem. 2000; 65: 2696
  • 40 Kantor SW, Hauser CR. J. Am. Chem. Soc. 1951; 73: 4122
  • 41 Chuard R, Giraud A, Renaud P. Angew. Chem. Int. Ed. 2002; 41: 4323
  • 42 Schweizer EE, Crouse DM, Dalrymple DL. J. Chem. Soc. D 1969; 354
  • 43 Alajarin M, Bonillo B, Ortin M.-M, Sanchez-Andrada P, Vidal A. Org. Lett. 2006; 8: 5645
  • 44 Alajarin M, Bonillo B, Ortin M.-M, Sanchez-Andrada P, Vidal A, Orenes R.-A. Org. Biomol. Chem. 2010; 8: 4690
  • 45 Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A, Orenes R.-A. Tetrahedron 2012; 68: 4672
  • 46 Alajarin M, Bonillo B, Ortin M.-M, Sanchez-Andrada P, Vidal A. Eur. J. Org. Chem. 2011; 1896
  • 47 Hayashi R, Feltenberger JB, Lohse AG, Walton MC, Hsung RP. Beilstein J. Org. Chem. 2011; 7: 410
  • 48 Feltenberger JB, Hsung RP. Org. Lett. 2011; 13: 3114
  • 49 Hayashi R, Ma Z.-X, Hsung RP. Org. Lett. 2012; 14: 252
  • 50 Snider BB, Phillips GB. J. Am. Chem. Soc. 1982; 104: 1113
  • 51 Snider BB, Phillips GB, Cordova R. J. Org. Chem. 1983; 48: 3003
  • 52 Suzuki T, Miyajima Y, Suzuki K, Iwakiri K, Koshimizu M, Hirai G, Sodeoka M, Kobayashi S. Org. Lett. 2013; 15: 1748
  • 53 Mikami K, Takahashi K, Nakai T. J. Am. Chem. Soc. 1990; 112: 4035
  • 54 Barriault L, Deon DH. Org. Lett. 2001; 3: 1925
  • 55 Gibbs RA, Okamura WH. J. Am. Chem. Soc. 1988; 110: 4062
  • 56 Pelc MJ, Zakarian A. Org. Lett. 2005; 7: 1629
  • 57 Ilardi EA, Isaacman MJ, Qin Y.-C, Shelly SA, Zakarian A. Tetrahedron 2009; 65: 3261
  • 58 Steinmeyer A, Schwede W, Bohlmann F. Liebigs Ann. Chem. 1988; 925
  • 59 Quinkert G, Schwartz U, Stark H, Weber W.-D, Adam F, Baier H, Frank G, Dürner G. Liebigs Ann. Chem. 1982; 1999