Gao, S. et al.: 2016 Science of Synthesis, 2016/4b: Metal-Catalyzed Cyclization Reactions 2 DOI: 10.1055/sos-SD-222-00161
Metal-Catalyzed Cyclization Reactions 2

2.6 Metal-Catalyzed (2 + 2 + 2) Cycloadditions

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Bora, U.; Dominguez, G.; Du, H.; Garve, L.; Harmata, M.; Hu, W.; Jones, D. E.; Lee, D.; Li, X.; Mondal, M.; Pérez Castells, J.; Sabbasani, V. R.; Shibata, Y.; Tanaka, K.; Tang, W.; Werz, D. B.; Xia, F.; Xu, X.; Ye, S.

Title: Metal-Catalyzed Cyclization Reactions 2

Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

The transition-metal-catalyzed (2 + 2 + 2) cycloaddition is a useful and atom-economical method for the synthesis of substituted six-membered-ring molecules. In this chapter, standard procedures for the transition-metal-catalyzed (2 + 2 + 2) cycloaddition involving not only alkynes but also nitriles, heterocumulenes, alkenes, and carbonyl compounds are presented. Applications in the synthesis of chiral aromatic molecules (biaryls, cyclophanes, and helicenes) and biologically active molecules are also described.

 
  • 1 Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. Wiley; Hoboken, NJ 2013
  • 2 Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
  • 3 Broere DLJ, Ruijter E. Synthesis 2012; 44: 2639
  • 4 Shibata Y, Tanaka K. Synthesis 2012; 44: 323
  • 5 Weding N, Hapke M. Chem. Soc. Rev. 2011; 40: 4525
  • 6 Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 7 Tanaka K. Chem.–Asian J. 2009; 4: 508
  • 8 Leboeuf D, Gandon V, Malacria M, In Handbook of Cyclization Reactions Ma S. Wiley-VCH Weinheim, Germany 2010; 367
  • 9 Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
  • 10 Shibata T, Tsuchikama K. Org. Biomol. Chem. 2008; 6: 1317
  • 11 Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Org. React. (Hoboken, NJ, U. S.) 2007; 68: 1
  • 12 Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
  • 13 Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
  • 14 Reppe W, Schlichting O, Klager K, Toepel T. Justus Liebigs Ann. Chem. 1948; 560: 1
  • 15 Vollhardt KPC. Acc. Chem. Res. 1977; 10: 1
  • 16 Vollhardt KPC. Angew. Chem. Int. Ed. Engl. 1984; 23: 539
  • 17 Yamazaki H. J. Synth. Org. Chem., Jpn. 1987; 45: 244
  • 18 Agenet N, Gandon V, Vollhardt KPC, Malacria M, Aubert C. J. Am. Chem. Soc. 2007; 129: 8860
  • 19 Yamamoto Y, Arakawa T, Ogawa R, Itoh K. J. Am. Chem. Soc. 2003; 125: 12143
  • 20 Tanaka K, Toyoda K, Wada A, Shirasaka K, Hirano M. Chem.–Eur. J. 2005; 11: 1145
  • 21 Witulski B, Alayrac C. Angew. Chem. Int. Ed. 2002; 41: 3281
  • 22 Komine Y, Kamisawa A, Tanaka K. Org. Lett. 2009; 11: 2361
  • 23 Matsuda T, Kadowaki S, Goya T, Murakami M. Org. Lett. 2007; 9: 133
  • 24 Iannazzo L, Vollhardt KPC, Malacria M, Aubert C, Gandon V. Eur. J. Org. Chem. 2011; 3283
  • 25 Yamamoto Y, Hattori K, Nishiyama H. J. Am. Chem. Soc. 2006; 128: 8336
  • 26 Yamamoto Y, Hattori K, Ishii J, Nishiyama H. Tetrahedron 2006; 62: 4294
  • 27 Nishida G, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2007; 46: 3951
  • 28 Ogaki S, Shibata Y, Noguchi K, Tanaka K. J. Org. Chem. 2011; 76: 1926
  • 29 Nishida G, Ogaki S, Yusa Y, Yokozawa T, Noguchi K, Tanaka K. Org. Lett. 2008; 10: 2849
  • 30 Shibata T, Fujimoto T, Yokota K, Takagi K. J. Am. Chem. Soc. 2004; 126: 8382
  • 31 Shibata T, Chiba T, Hirashima H, Ueno Y, Endo K. Angew. Chem. Int. Ed. 2009; 48: 8066
  • 32 Tanaka K, Takeishi K, Noguchi K. J. Am. Chem. Soc. 2006; 128: 4586
  • 33 Suda T, Noguchi K, Hirano M, Tanaka K. Chem.–Eur. J. 2008; 14: 6593
  • 34 Araki T, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2013; 52: 5617
  • 35 Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2012; 134: 4080
  • 36 Teplý F, Stará IG, Starý I, Kollárovič A, Šaman D, Rulíšek L, Fiedler P. J. Am. Chem. Soc. 2002; 124: 9175
  • 37 Tanaka K, Kamisawa A, Suda T, Noguchi K, Hirano M. J. Am. Chem. Soc. 2007; 129: 12078
  • 38 Wakatsuki Y, Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280
  • 39 Vollhardt KPC, Bergman RG. J. Am. Chem. Soc. 1974; 96: 4996
  • 40 Bönnemann H, Brinkmann R, Schenkluhn H. Synthesis 1974; 575
  • 41 Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810
  • 42 Hapke M, Weding N, Spannenberg A. Organometallics 2010; 29: 4298
  • 43 Kase K, Goswami A, Ohtaki K, Tanabe E, Saino N, Okamoto S. Org. Lett. 2007; 9: 931
  • 44 Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
  • 45 Yamamoto Y, Kinpara K, Saigoku T, Takagishi H, Okuda S, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2005; 127: 605
  • 46 Yamamoto Y, Kinpara K, Ogawa R, Nishiyama H, Itoh K. Chem.–Eur. J. 2006; 12: 5618
  • 47 Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
  • 48 Tanaka K, Hara H, Nishida G, Hirano M. Org. Lett. 2007; 9: 1907
  • 49 Onodera G, Shimizu Y, Kimura J, Kobayashi J, Ebihara Y, Kondo K, Sakata K, Takeuchi R. J. Am. Chem. Soc. 2012; 134: 10515
  • 50 Gutnov A, Heller B, Fischer C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. Int. Ed. 2004; 43: 3795
  • 51 Wada A, Noguchi K, Hirano M, Tanaka K. Org. Lett. 2007; 9: 1295
  • 52 Hong P, Yamazaki H. Synthesis 1977; 50
  • 53 Hoberg H, Oster BW. Synthesis 1982; 324
  • 54 Earl RA, Vollhardt KPC. J. Org. Chem. 1984; 49: 4786
  • 55 Duong HA, Cross MJ, Louie J. J. Am. Chem. Soc. 2004; 126: 11438
  • 56 Tanaka K, Wada A, Noguchi K. Org. Lett. 2005; 7: 4737
  • 57 Onodera G, Suto M, Takeuchi R. J. Org. Chem. 2012; 77: 908
  • 58 Yu RT, Rovis T. J. Am. Chem. Soc. 2006; 128: 12370
  • 59 Martin TJ, Rovis T. Angew. Chem. Int. Ed. 2013; 52: 5368
  • 60 Ishii M, Mori F, Tanaka K. Chem.–Eur. J. 2014; 20: 2169
  • 61 Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
  • 62 Tsuchikama K, Kuwata Y, Shibata T. J. Am. Chem. Soc. 2006; 128: 13686
  • 63 Evans PA, Lai KW, Sawyer JR. J. Am. Chem. Soc. 2005; 127: 12466
  • 64 Shibata T, Arai Y, Tahara Y. Org. Lett. 2005; 7: 4955
  • 65 Hara J, Ishida M, Kobayashi M, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2014; 53: 2956
  • 66 Masutomi K, Sakiyama N, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2012; 51: 13031
  • 67 Shibata T, Tahara Y. J. Am. Chem. Soc. 2006; 128: 11766
  • 68 Brusoe AT, Alexanian EJ. Angew. Chem. Int. Ed. 2011; 50: 6596
  • 69 Brusoe AT, Edwankar RV, Alexanian EJ. Org. Lett. 2012; 14: 6096
  • 70 Otake Y, Tanaka R, Tanaka K. Eur. J. Org. Chem. 2009; 2737
  • 71 Tanaka K, Otake Y, Sagae H, Noguchi K, Hirano M. Angew. Chem. Int. Ed. 2008; 47: 1312
  • 72 Alayrac C, Schollmeyer D, Witulski B. Chem. Commun. (Cambridge) 2009; 1464
  • 73 Nicolaou KC, Tang Y, Wang J. Angew. Chem. Int. Ed. 2009; 48: 3449
  • 74 Sato Y, Tamura T, Mori M. Angew. Chem. Int. Ed. 2004; 43: 2436