Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00048
Advances in Organoboron Chemistry towards Organic Synthesis

5 anti Boron Addition to Alkynes

More Information

Book

Editor: Fernández, E.

Authors: Aggarwal, V. K.; Ahmed, E.-A. M. A.; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K.; Carbó, J. J.; Cho, H. Y.; Clark, T. B.; Fernández, E.; Fu, Y.; Geetharani, K.; Gong, T.-J.; Ito, H.; Kitanosono, T.; Kobayashi, S.; Kubota, K.; Maseras, F.; Ohmiya, H.; Pineschi, M.; Ping, Y.; Sawamura, M.; Wang, J.; Wang, Y.-F.; Wu, C.; Xu, L.; Yoshida, H.; Zhang, F.-L.

Title: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Boron additions, such as carboboration, silaboration, diboration, or hydroboration of alkynes, offer efficient strategies for the synthesis of alkenylborons, which are versatile synthetic intermediates. Most of the reported reactions occur in syn addition mode. Accordingly, anti-selective boron addition to alkynes is an important challenge in modern organic synthesis. This chapter describes successful examples of anti-selective boron additions.

 
  • 1 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
  • 2 Yamamoto A, Suginome M. J. Am. Chem. Soc. 2005; 127: 15706
  • 3 Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
  • 4 Okuno Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2011; 50: 920
  • 5 Wang S, Zhang J, Kong L, Tan Z, Bai Y, Zhu G. Org. Lett. 2018; 20: 5631
  • 6 Nagao K, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 10605
  • 7 Yamazaki A, Nagao K, Iwai T, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2018; 57: 3196
  • 8 Nogami M, Hirano K, Kanai M, Wang C, Saito T, Miyamoto K, Muranaka A, Uchiyama M. J. Am. Chem. Soc. 2017; 139: 12358
  • 9 Roscales S, Csákÿ AG. Org. Lett. 2015; 17: 1605
  • 10 Ohmura T, Oshima K, Suginome M. Chem. Commun. (Cambridge) 2008; 1416
  • 11 Nagao K, Ohmiya H, Sawamura M. Org. Lett. 2015; 17: 1304
  • 12 Ohmura T, Morimasa Y, Suginome M. Chem. Lett. 2017; 46: 1793
  • 13 Nagashima Y, Hirano K, Takita R, Uchiyama M. J. Am. Chem. Soc. 2014; 136: 8532
  • 14 Verma A, Snead RF, Dai Y, Slebodnick C, Yang Y, Yu H, Yao F, Santos WL. Angew. Chem. Int. Ed. 2017; 56: 5111
  • 15 Fritzemeier R, Santos WL. Chem.–Eur. J. 2017; 23: 15534
  • 16 Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
  • 17 Cid J, Carbó JJ, Fernández E. Chem.–Eur. J. 2012; 18: 1512
  • 18 Gunanathan C, Hölscher M, Pan F, Leitner W. J. Am. Chem. Soc. 2012; 134: 14349
  • 19 Obligacion JV, Neely JM, Yazdani AN, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2015; 137: 5855
  • 20 Jang WJ, Lee WL, Moon JH, Lee JY, Yun J. Org. Lett. 2016; 18: 1390
  • 21 Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 14050
  • 22 Wang Q, Motika SE, Akhmedov NG, Petersen JL, Shi X. Angew. Chem. Int. Ed. 2014; 53: 5418
  • 23 Xu S, Zhang Y, Li B, Liu S.-Y. J. Am. Chem. Soc. 2016; 138: 14566
  • 24 Yang Y, Jiang J, Yu H, Shi J. Chem.–Eur. J. 2018; 24: 178
  • 25 Yuan K, Suzuki N, Mellerup SK, Wang X, Yamaguchi S, Wang S. Org. Lett. 2016; 18: 720
  • 26 McGough JS, Butler SM, Cade IA, Ingleson MJ. Chem. Sci. 2016; 7: 3384
  • 27 Nagao K, Yamazaki A, Ohmiya H, Sawamura M. Org. Lett. 2018; 20: 1861
  • 28 Fritzemeier R, Gates A, Guo X, Lin Z, Santos WL. J. Org. Chem. 2018; 83: 10436
  • 29 Zi Y, Schömberg F, Seifert F, Görls H, Vilotijevic I. Org. Biomol. Chem. 2018; 16: 6341
  • 30 Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2018; 57: 9485