Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00174
Advances in Organoboron Chemistry towards Organic Synthesis

10 Borylation Reactions in Water

More Information

Book

Editor: Fernández, E.

Authors: Aggarwal, V. K.; Ahmed, E.-A. M. A. ; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K. ; Carbó, J. J. ; Cho, H. Y.; Clark, T. B. ; Fernández, E.; Fu, Y. ; Geetharani, K. ; Gong, T.-J. ; Ito, H. ; Kitanosono, T.; Kobayashi, S.; Kubota, K. ; Maseras, F. ; Ohmiya, H. ; Pineschi, M.; Ping, Y.; Sawamura, M. ; Wang, J. ; Wang, Y.-F.; Wu, C.; Xu, L. ; Yoshida, H. ; Zhang, F.-L.

Title: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

Organoboron compounds are integral to modern synthetic organic chemistry as their C–B linkages undergo a range of chemical transformations. Their privileged position is underpinned by their versatile transformability with retention of stereochemistry, as well as their non-toxic nature and excellent functional-group tolerance. Although water has become a common medium in the reaction of organoboron compounds, such as Suzuki–Miyaura couplings, C–B bond formations in aqueous media have emerged only recently. This chapter offers an overview of recent developments across the broad landscape of organoboron chemistry, using solvent amounts of water and covering a range of C–B bond-formation processes, including enantioselective reactions.

 
  • 1 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. D. G. Hall,. Wiley-VCH; Weinheim, Germany 2011
  • 2 Synthesis and Application of Organoboron Compounds. E. Fernández,, A. Whiting,. Springer; Cham, Switzerland 2015
  • 3 A. B. Cuenca,, R. Shishido,, H. Ito,, E. Fernández,. Chem. Soc. Rev.. 2017; 46: 415
  • 4 E. C. Neeve,, S. J. Geier,, I. A. I. Mkhalid,, S. A. Westcott,, T. B. Marder,. Chem. Rev.. 2016; 116: 9091
  • 5 B. H. Lipshutz,, R. Moser,, K. R. Voigtritter,. Isr. J. Chem.. 2010; 50: 691
  • 6 P. Klumphu,, B. H. Lipshutz,. J. Org. Chem.. 2014; 79: 888
  • 7 K. Chen,, S. Zhang,, P. He,, P. Li,. Chem. Sci.. 2016; 7: 3676
  • 8 K. Chen,, M. S. Cheung,, Z. Lin,, P. Li,. Org. Chem. Front.. 2016; 3: 875
  • 9 M. Jiang,, H. Yang,, H. Fu,. Org. Lett.. 2016; 18: 5248
  • 10 A. Zernickel,, W. Du,, S. A. Ghorpade,, D. N. Sawant,, A. A. Makki,, N. Sekar,, J. Eppinger,. J. Org. Chem.. 2018; 83: 1842
  • 11 S. D. Xu,, F. Z. Sun,, W. H. Deng,, H. Hao,, X. H. Duan,. New J. Chem.. 2018; 42: 16464
  • 12 J. Zhang,, X. Wang,, H. Yu,, J. Ye,. Synlett. 2012; 23: 1394
  • 13 X. Qi,, L.-B. Jiang,, C. Zhou,, J.-B. Peng,, X.-F. Wu,. ChemistryOpen. 2017; 6: 345
  • 14 X. Qi,, H.-P. Li,, J.-B. Peng,, X.-F. Wu,. Tetrahedron Lett.. 2017; 58: 3851
  • 15 W. Erb,, A. Hellal,, M. Albini,, J. Rouden,, J. Blanchet,. Chem.–Eur. J.. 2014; 20: 6608
  • 16 W. Erb,, M. Albini,, J. Rouden,, J. Blanchet,. J. Org. Chem.. 2014; 79: 10568
  • 17 C.-T. Yang,, Z.-Q. Zhang,, H. Tajuddin,, C.-C. Wu,, J. Liang,, J.-H. Liu,, Y. Fu,, M. Czyzewska,, P. G. Steel,, T. B. Marder,, L. Liu,. Angew. Chem. Int. Ed.. 2012; 51: 528
  • 18 A. Joshi-Pangu,, X. Ma,, M. Diane,, S. Iqbal,, R. J. Kribs,, R. Huang,, C.-Y. Wang,, M. R. Biscoe,. J. Org. Chem.. 2012; 77: 6629
  • 19 K. Endo,, T. Ohkubo,, T. Ishioka,, T. Shibata,. J. Org. Chem.. 2012; 77: 4826
  • 20 C. L. Peck,, J. A. Calderone,, W. L. Santos,. Synthesis. 2015; 47: 2242
  • 21 A. K. Nelson,, C. L. Peck,, S. M. Rafferty,, W. L. Santos,. J. Org. Chem.. 2016; 81: 4269
  • 22 C.-C. Tai,, M.-S. Yu,, Y.-L. Chen,, W.-H. Chuang,, T.-H. Lin,, G. P. A. Yap,, T.-G. Ong,. Chem. Commun. (Cambridge). 2014; 50: 4344
  • 23 C. Tanaka,, K. Nakamura,, T. Nishikata,. Tetrahedron. 2017; 73: 3999
  • 24 Q.-Q. Xuan,, Y.-H. Wei,, Q.-L. Song,. Chin. Chem. Lett.. 2017; 28: 1163
  • 25 G. Stavber,, Z. Časar,. Appl. Organomet. Chem.. 2013; 27: 159
  • 26 Z.-J. Yao,, S. Hong,, W. Zhang,, M. Liu,, W. Deng,. Tetrahedron Lett.. 2016; 57: 910
  • 27 J. S. da Costa,, R. K. Braun,, P. A. Horn,, D. S. Lüdtke,, A. V. Moro,. RSC Adv.. 2016; 6: 59935
  • 28 M. Raducan,, R. Alam,, K. J. Szabó,. Angew. Chem. Int. Ed.. 2012; 51: 13050
  • 29 R. Alam,, M. Raducan,, L. Eriksson,, K. J. Szabó,. Org. Lett.. 2013; 15: 2546
  • 30 Y. Takeda,, A. Kuroda,, W. M. C. Sameera,, K. Morokuma,, S. Minakata,. Chem. Sci.. 2016; 7: 6141
  • 31 D. Hu,, L. Wang,, P. Li,. Org. Lett.. 2017; 19: 2770
  • 32 T. Kamei,, S. Nishino,, T. Shimada,. Tetrahedron Lett.. 2018; 59: 2896
  • 33 J.-B. Chen,, A. Whiting,. Synthesis. 2018; 50: 3843
  • 34 M. Isegawa,, W. M. C. Sameera,, A. K. Sharma,, T. Kitanosono,, M. Kato,, S. Kobayashi,, K. Morokuma,. ACS Catal.. 2017; 7: 5370
  • 35 M.-A. Tehfe,, J. Monot,, M. Malacria,, L. Fensterbank,, J.-P. Fouassier,, D. P. Curran,, E. Lacôte,, J. Lalevée,. ACS Macro Lett.. 2012; 1: 92
  • 36 S. B. J. Kan,, X. Huang,, Y. Gumulya,, K. Chen,, F. H. Arnold,. Nature (London). 2017; 552: 132
  • 37 X. Huang,, M. Garcia-Borràs,, K. Miao,, S. B. J. Kan,, A. Zutshi,, K. N. Houk,, F. H. Arnold,. ACS Cent. Sci.. 2019; 5: 270
  • 38 K. Chen,, X. Huang,, S.-Q. Zhang,, A. Z. Zhou,, S. B. J. Kan,, X. Hong,, F. H. Arnold,. Synlett. 2019; 30: 378
  • 39 D. Hemming,, R. Fritzemeier,, S. A. Westcott,, W. L. Santos,, P. G. Steel,. Chem. Soc. Rev.. 2018; 47: 7477
  • 40 H. Chea,, H.-S. Sim,, J. Yun,. Bull. Korean Chem. Soc.. 2010; 31: 551
  • 41 I. Ibrahem,, P. Breistein,, A. Córdova,. Angew. Chem. Int. Ed.. 2011; 50: 12036
  • 42 R. Cano,, D. J. Ramón,, M. Yus,. J. Org. Chem.. 2010; 75: 3458
  • 43 S. B. Thorpe,, J. A. Calderone,, W. L. Santos,. Org. Lett.. 2012; 14: 1918
  • 44 S. Kobayashi,, P. Xu,, T. Endo,, M. Ueno,, T. Kitanosono,. Angew. Chem. Int. Ed.. 2012; 51: 12763
  • 45 B. Li,, L. Wang,, C. Qin,, L. Zhu,. Catal. Commun.. 2016; 86: 23
  • 46 T. Kitanosono,, P. Xu,, S. Kobayashi,. Chem.–Asian J.. 2014; 9: 179
  • 47 L. Zhu,, T. Kitanosono,, P. Xu,, S. Kobayashi,. Beilstein J. Org. Chem.. 2015; 11: 2007
  • 48 T. Kitanosono,, P. Xu,, S. Isshiki,, L. Zhu,, S. Kobayashi,. Chem. Commun. (Cambridge). 2014; 50: 9336
  • 49 R. Gandolfi,, G. Facchetti,, M. S. Christodoulou,, M. Fuse,, F. Meneghetti,, I. Rimoldi,. ChemistryOpen. 2018; 7: 393
  • 50 T. Kitanosono,, P. Xu,, S. Kobayashi,. Chem. Commun. (Cambridge). 2013; 49: 8184
  • 51 S. W. Reilly,, G. Akurathi,, H. K. Box,, H. U. Valle,, T. K. Hollis,, C. E. Webster,. J. Organomet. Chem.. 2016; 802: 32
  • 52 T. Kitanosono,, S. Kobayashi,. Asian J. Org. Chem.. 2013; 2: 961
  • 53 W. Wen,, B. Han,, F. Yan,, L. Ding,, B. Li,, L. Wang,, L. Zhu,. Nanomaterials. 2018; 8: 326
  • 54 X.-F. Zhou,, Y.-Y. Sun,, Y.-D. Wu,, J.-J. Dai,, J. Xu,, Y. Huang,, H.-J. Xu,. Tetrahedron. 2016; 72: 5691
  • 55 Q. Xuan,, C. Zhao,, Q. Song,. Org. Biomol. Chem.. 2017; 15: 5140