Molander, G. A.: 2020 Science of Synthesis, 2019/5: Dual Catalysis in Organic Synthesis 2 DOI: 10.1055/sos-SD-232-00119
Dual Catalysis in Organic Synthesis 2

2.4 Organocatalyst/Photocatalyst Dual Catalysis

More Information

Book

Editor: Molander, G. A.

Authors: Bäckvall, J.-E.; Cruz, F. A.; Deng, Y.-H.; Diéguez, M.; Dong, V. M.; Galman, J. L.; Gröger, H. ; Montgomery, S. L.; Pàmies, O.; Parmeggiani, F.; Shao, Z.; Shi, X.; Turner, N. J.; Vitale, M. R. ; Wang, H.-Y.; Wang, J.; Yamashita, Y.; Zeitler, K. ; Zhao, G.

Title: Dual Catalysis in Organic Synthesis 2

Print ISBN: 978313242981-9; Online ISBN: 978313242985-7; Book DOI: 10.1055/b-006-166041

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

Recent advances in dual-catalytic methods combining organocatalysis with (visible-light) photocatalysis are detailed within this chapter. It summarizes general aspects together with selected state-of-the-art procedures, highlighting both pioneering examples and current developments.

The merger of organocatalysis with photocatalysis has proven to be enormously powerful, not only because it provides a synthetic platform to readily access radical intermediates within an organocatalytic manifold and its potential to alter the reactivity of typical organocatalytic intermediates, but also due to the new opportunities in asymmetric synthesis. The synergistic dual combination with organocatalysis enables photocatalytic reactions to be conducted in an enantioselective fashion and thereby has had a profound influence on several fields of current chemical research, including radical chemistry.

 
  • 1 A. Berkessel,, H. Gröger,. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim, Germany 2005
  • 3 Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications Dalko, P. I., Ed.; Wiley-VCH: Weinheim, Germany (2013).
  • 4 D. W. C. MacMillan,. Nature (London). 2008; 455: 304
  • 5 Science of Synthesis: Asymmetric Organocatalysis List, B., Ed.; Thieme: Stuttgart (2012); Vol. 1.
  • 6 Science of Synthesis: Asymmetric Organocatalysis Maruoka, K., Ed.; Thieme: Stuttgart (2012); Vol. 2.
  • 7 C. K. Prier,, D. A. Rankic,, D. W. C. MacMillan,. Chem. Rev.. 2013; 113: 5322
  • 9 N. A. Romero,, D. A. Nicewicz,. Chem. Rev.. 2016; 116: 10075
  • 10 Visible Light Photocatalysis in Organic Chemistry Stephenson, C. R. J. Yoon, T. P. MacMillan, D. W. C., Eds.; Wiley-VCH: Weinheim, Germany (2018).
  • 11 J. K. Matsui,, S. B. Lang,, D. R. Heitz,, G. A. Molander,. ACS Catal.. 2017; 7: 2563
  • 12 Zeitler, K. Neumann, M., In Chemical PhotocatalysisKönig, B., Ed.; de Gruyter: Berlin (2013); p 151.
  • 13 M. N. Hopkinson,, B. Sahoo,, J.-L. Li,, F. Glorius,. Chem.–Eur. J.. 2014; 20: 3874
  • 14 K. L. Skubi,, T. R. Blum,, T. P. Yoon,. Chem. Rev.. 2016; 116: 10035
  • 15 J. Twilton,, C. C. Le,, P. Zhang,, M. H. Shaw,, R. W. Evans,, D. W. C. MacMillan,. Nat. Rev. Chem.. 2017; 1: 0052
  • 16 J. Seayad,, B. List,. Org. Biomol. Chem.. 2005; 3: 719
  • 17 Science of Synthesis: Photocatalysis in Organic SynthesisKönig, B., Ed.; Thieme: Stuttgart (2019).
  • 18 K. Zeitler,. Angew. Chem. Int. Ed.. 2009; 48: 9785
  • 19 M. H. Shaw,, J. Twilton,, D. W. C. MacMillan,. J. Org. Chem.. 2016; 81: 6898
  • 20 F. Strieth-Kalthoff,, M. J. James,, M. Teders,, L. Pitzer,, F. Glorius,. Chem. Soc. Rev.. 2018; 47: 7190
  • 21 Q.-Q. Zhou,, Y.-Q. Zou,, L.-Q. Lu,, W.-J. Xiao,. Angew. Chem. Int. Ed.. 2019; 58: 1586
  • 22 S. Protti,, M. Fagnoni,, D. Ravelli,. ChemCatChem. 2015; 7: 1516
  • 23 L. Capaldo,, D. Ravelli,. Eur. J. Org. Chem.. 2017; 2056
  • 24 Zeitler, K., In Visible Light Photocatalysis in Organic ChemistryStephenson, C. R. J. Yoon, T. P. MacMillan, D. W. C., Eds.; Wiley-VCH: Weinheim, Germany (2018); p 159.
  • 25 R. Brimioulle,, D. Lenhart,, M. M. Maturi,, T. Bach,. Angew. Chem. Int. Ed.. 2015; 54: 3872
  • 26 E. Meggers,. Chem. Commun. (Cambridge). 2015; 51: 3290
  • 27 M. Silvi,, P. Melchiorre,. Nature (London). 2018; 554: 41
  • 28 M. E. Abbasov,, D. Romo,. Nat. Prod. Rep.. 2014; 31: 1318
  • 29 D. Kampen,, C. M. Reisinger,, B. List,. Top. Curr. Chem.. 2010; 291: 395
  • 30 E. Arceo,, I. D. Jurberg,, A. Álvarez-Fernández,, P. Melchiorre,. Nat. Chem.. 2013; 5: 750
  • 31 C. G. S. Lima,, de M. Lima , M. Duarte,, I. D. Jurberg,, M. W. Paixão,. ACS Catal.. 2016; 6: 1389
  • 32 Z.-Y. Cao,, T. Ghosh,, P. Melchiorre,. Nat. Commun.. 2018; 9: 3274
  • 33 A. A. Ghogare,, A. Greer,. Chem. Rev.. 2016; 116: 9994
  • 34 P. Melchiorre,, M. Marigo,, A. Carlone,, G. Bartoli,. Angew. Chem. Int. Ed.. 2008; 47: 6138
  • 35 S. Bertelsen,, K. A. Jørgensen,. Chem. Soc. Rev.. 2009; 38: 2178
  • 36 S. France,, D. J. Guerin,, S. J. Miller,, T. Lectka,. Chem. Rev.. 2003; 103: 2985
  • 37 B. S. Donslund,, T. K. Johansen,, P. H. Poulsen,, K. S. Halskov,, K. A. Jørgensen,. Angew. Chem. Int. Ed.. 2015; 54: 13860
  • 38 G. J. Reyes-Rodríguez,, N. M. Rezayee,, A. Vidal-Albalat,, K. A. Jørgensen,. Chem. Rev.. 2019; 119: 4221
  • 39 G. Lelais,, D. W. C. MacMillan,. Aldrichimica Acta. 2006; 39: 79
  • 40 Mahrwald, R., In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and ApplicationsDalko, P. I., Ed.; Wiley-VCH: Weinheim, Germany (2013); p 69.
  • 41 P. Melchiorre,. Angew. Chem. Int. Ed.. 2012; 51: 9748
  • 42 L. Jiang,, Y.-C. Chen,. Catal. Sci. Technol.. 2011; 1: 354
  • 43 A. Vega-Peñaloza,, S. Paria,, M. Bonchio,, L. DellʼAmico,, X. Companyó,. ACS Catal.. 2019; 9: 6058
  • 44 S. Mukherjee,, J. W. Yang,, S. Hoffmann,, B. List,. Chem. Rev.. 2007; 107: 5471
  • 46 A. Erkkilä,, I. Majander,, P. M. Pihko,. Chem. Rev.. 2007; 107: 5416
  • 47 M. J. Gaunt,, C. C. C. Johansson,. Chem. Rev.. 2007; 107: 5596
  • 48 MacMillan, D. W. C. Rendler, S., In Asymmetric Synthesis II: More Methods and ApplicationsChristmann, M. Bräse, S., Eds.; Wiley-VCH: Weinheim, Germany (2012); p 87.
  • 49 M. Mečiarová,, P. Tisovský,, R. Šebesta,. New J. Chem.. 2016; 40: 4855
  • 50 D. A. Nicewicz,, D. W. C. MacMillan,. Science (Washington, D. C.). 2008; 322: 77
  • 51 A. Juris,, V. Balzani,, F. Barigelletti,, S. Campagna,, P. Belser,, A. Von Zelewsky,. Coord. Chem. Rev.. 1988; 84: 85
  • 52 M. A. Cismesia,, T. P. Yoon,. Chem. Sci.. 2015; 6: 5426 Chem. Sci.. 2015; 6: 6019
  • 53 L. Buzzetti,, G. E. M. Crisenza,, P. Melchiorre,. Angew. Chem. Int. Ed.. 2019; 58: 3730
  • 54 A. Studer,, D. Curran,. Angew. Chem. Int. Ed.. 2016; 55: 58
  • 55 P. Riente,, A. M. Adams,, J. Albero,, E. Palomares,, M. A. Pericàs,. Angew. Chem. Int. Ed.. 2014; 53: 9613
  • 56 M. Cherevatskaya,, M. Neumann,, S. Füldner,, C. Harlander,, S. Kümmel,, S. Dankesreiter,, A. Pfitzner,, K. Zeitler,, B. König,. Angew. Chem. Int. Ed.. 2012; 51: 4062
  • 57 P. Wu,, C. He,, J. Wang,, X. Peng,, X. Li,, Y. An,, C. Duan,. J. Am. Chem. Soc.. 2012; 134: 14991
  • 58 A. Gualandi,, M. Marchini,, L. Mengozzi,, M. Natali,, M. Lucarini,, P. Ceroni,, P. G. Cozzi,. ACS Catal.. 2015; 5: 5927
  • 59 M. Neumann,, S. Füldner,, B. König,, K. Zeitler,. Angew. Chem. Int. Ed.. 2011; 50: 951
  • 60 Hari, D. H. König, B. Chem. Commun. (Cambridge) (2014) 506688.
  • 61 Srivastava, V. Singh, P. P. RSC Adv. (2017) 731377.
  • 62 M. Majek,, F. Filace,, A. Jacobi von Wangelin,. Beilstein J. Org. Chem.. 2014; 10: 981
  • 63 K. Fidaly,, C. Ceballos,, A. Falguières,, M. S.-I. Veitia,, A. Guy,, C. Ferroud,. Green Chem.. 2012; 14: 1293
  • 64 M. Silvi,, E. Arceo,, I. D. Jurberg,, C. Cassani,, P. Melchiorre,. J. Am. Chem. Soc.. 2015; 137: 6120
  • 65 Speckmeier, E. Zeitler, K., In Science of Synthesis: Photocatalysis in Organic SynthesisKönig, B., Ed.; Thieme: Stuttgart (2019); p 101.
  • 66 D. Cambié,, C. Bottecchia,, N. J. W. Straathof,, V. Hessel,, T. Noël,. Chem. Rev.. 2016; 116: 10276
  • 67 M. B. Plutschack,, B. Pieber,, K. Gilmore,, P. H. Seeberger,. Chem. Rev.. 2017; 117: 11796
  • 68 M. Neumann,, K. Zeitler,. Org. Lett.. 2012; 14: 2658
  • 69 E. R. Welin,, A. A. Warkentin,, J. C. Conrad,, D. W. C. MacMillan,. Angew. Chem. Int. Ed.. 2015; 54: 9668
  • 70 D. A. Nagib,, M. E. Scott,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2009; 131: 10875
  • 71 H.-W. Shih,, M. N. Vander Wal,, R. L. Grange,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2010; 132: 13600
  • 72 G. Cecere,, C. M. König,, J. L. Alleva,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2013; 135: 11521
  • 73 E. Larionov,, M. M. Mastandrea,, M. A. Pericàs,. ACS Catal.. 2017; 7: 7008
  • 75 A. G. Capacci,, J. T. Malinowski,, N. J. McAlpine,, J. Kuhne,, D. W. C. MacMillan,. Nat. Chem.. 2017; 9: 1073
  • 76 Y. Zhu,, L. Zhang,, S. Luo,. J. Am. Chem. Soc.. 2014; 136: 14642
  • 78 J. W. Beatty,, C. R. J. Stephenson,. Acc. Chem. Res.. 2015; 48: 1474
  • 79 Zou, Y.-Q. Xiao, W.-J., In Visible Light Photocatalysis in Organic ChemistryStephenson, C. R. J. Yoon, T. P. MacMillan, D. W. C., Eds.; Wiley-VCH: Weinheim, Germany (2018); p 93.
  • 80 M. Rueping,, C. Vila,, R. M. Koenigs,, K. Poscharny,, D. C. Fabry,. Chem. Commun. (Cambridge). 2011; 47: 2360
  • 81 M. Rueping,, J. Zoller,, D. C. Fabry,, K. Poscharny,, R. M. Koenigs,, T. E. Weirich,, J. Mayer,. Chem.–Eur. J.. 2012; 18: 3478
  • 82 Q. Yang,, L. Zhang,, C. Ye,, S. Luo,, L.-Z. Wu,, C.-H. Tung,. Angew. Chem. Int. Ed.. 2017; 56: 3694
  • 83 H. Hou,, S. Zhu,, I. Atodiresei,, M. Rueping,. Eur. J. Org. Chem.. 2018; 1277
  • 84 M. T. Pirnot,, D. A. Rankic,, D. B. C. Martin,, D. W. C. MacMillan,. Science (Washington, D. C.). 2013; 339: 1593
  • 85 D. Leifert,, A. Studer,. Angew. Chem. Int. Ed.. 2019; 58
  • 86 F. R. Petronijević,, M. Nappi,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2013; 135: 18323
  • 87 J. L. Jeffrey,, F. R. Petronijević,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2015; 137: 8404
  • 88 J. A. Terrett,, M. D. Clift,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2014; 136: 6858
  • 89 J. J. Murphy,, D. Bastida,, S. Paria,, M. Fagnoni,, P. Melchiorre,. Nature (London). 2016; 532: 218
  • 90 A. Bahamonde,, J. J. Murphy,, M. Savarese,, E. Brémond,, A. Cavalli,, P. Melchiorre,. J. Am. Chem. Soc.. 2017; 139: 4559
  • 91 M. Silvi,, C. Verrier,, Y. P. Rey,, L. Buzzetti,, P. Melchiorre,. Nat. Chem.. 2017; 9: 868
  • 92 G. Goti,, B. Bieszczad,, A. Vega-Peñaloza,, P. Melchiorre,. Angew. Chem. Int. Ed.. 2019; 58: 1213
  • 93 T. Morack,, C. Mück-Lichtenfeld,, R. Gilmour,. Angew. Chem. Int. Ed.. 2019; 58: 1208
  • 94 J.-J. Zhao,, H.-H. Zhang,, X. Shen,, S. Yu,. Org. Lett.. 2019; 21: 913
  • 95 Z.-J. Feng,, J. Xuan,, X.-D. Xia,, W. Ding,, W. Guo,, J.-R. Chen,, Y.-Q. Zou,, L.-Q. Lu,, W.-J. Xiao,. Org. Biomol. Chem.. 2014; 12: 2037
  • 96 G. Wei,, C. Zhang,, F. Bureš,, X. Ye,, C.-H. Tan,, Z. Jiang,. ACS Catal.. 2016; 6: 3708
  • 97 L. C. Morrill,, A. D. Smith,. Chem. Soc. Rev.. 2014; 43: 6214
  • 98 J. Merad,, J.-M. Pons,, O. Chuzel,, C. Bressy,. Eur. J. Org. Chem.. 2016; 5589
  • 99 J. N. Arokianathar,, A. B. Frost,, A. M. Z. Slawin,, D. Stead,, A. D. Smith,. ACS Catal.. 2018; 8: 1153
  • 100 D. M. Flanigan,, F. Romanov-Michailidis,, N. A. White,, T. Rovis,. Chem. Rev.. 2015; 115: 9307
  • 101 K. Zeitler,. Angew. Chem. Int. Ed.. 2005; 44: 7506
  • 102 Davies, A. T. Smith, A. D., In Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis Nolan, S. P. Cazin, C. S. J., Eds.; Thieme: Stuttgart (2018); Vol. 2, p 395.
  • 103 N-Heterocyclic Carbenes in Organocatalysis Biju, A. T.; Ed.; Wiley-VCH: Weinheim, Germany (2018).
  • 104 M. A. Wang,, K. A. Scheidt,. Angew. Chem. Int. Ed.. 2016; 55: 14912
  • 105 X.-Y. Chen,, S. Li,, F. Vetica,, M. Kumar,, D. Enders,. iScience. 2018; 2: 1
  • 106 A. T. Biju,, N. Kuhl,, F. Glorius,. Acc. Chem. Res.. 2011; 44: 1182
  • 107 S. J. Ryan,, L. Candish,, D. W. Lupton,. Chem. Soc. Rev.. 2013; 42: 4906
  • 108 Prier, C. K. MacMillan, D. W. C., In Visible Light Photocatalysis in Organic ChemistryStephenson, C. R. J. Yoon, T. P. MacMillan, D. W. C., Eds.; Wiley-VCH: Weinheim, Germany (2018); p 299.
  • 109 D. A. DiRocco,, T. Rovis,. J. Am. Chem. Soc.. 2012; 134: 8094
  • 110 R. R. Knowles,, E. N. Jacobsen,. Proc. Natl Acad. Sci. USA. 2010; 107: 20678
  • 111 D. Parmar,, E. Sugiono,, S. Raja,, M. Rueping,. Chem. Rev.. 2014; 114: 9047
  • 112 T. James,, M. van Gemmeren,, B. List,. Chem. Rev.. 2015; 115: 9388
  • 113 M. S. Taylor,, E. N. Jacobsen,. Angew. Chem. Int. Ed.. 2006; 45: 1520
  • 114 K. Brak,, E. N. Jacobsen,. Angew. Chem. Int. Ed.. 2013; 52: 534
  • 115 C. Brenninger,, J. D. Jolliffe,, T. Bach,. Angew. Chem. Int. Ed.. 2018; 57: 14338
  • 116 K. N. Lee,, M. Y. Ngai,. Chem. Commun. (Cambridge). 2017; 53: 13093
  • 117 M. H. V. Huynh,, T. J. Meyer,. Chem. Rev.. 2007; 107: 5004
  • 118 D. C. Miller,, K. T. Tarantino,, R. R. Knowles,. Top. Curr. Chem.. 2016; 374: 30
  • 120 M. Nakajima,, E. Fava,, S. Loeschner,, Z. Jiang,, M. Rueping,. Angew. Chem. Int. Ed.. 2015; 54: 8828
  • 121 Thullen, S. M. Ashley, M. A. Rovis, T., In Science of Synthesis: Photocatalysis in Organic SynthesisKönig, B., Ed.; Thieme: Stuttgart (2019); p 219.
  • 122 M. Neumann,, K. Zeitler,. Chem.–Eur. J.. 2013; 19: 6950
  • 123 J. Du,, L. R. Espelt,, I. A. Guzei,, T. P. Yoon,. Chem. Sci.. 2011; 2: 2115
  • 124 K. T. Tarantino,, P. Liu,, R. R. Knowles,. J. Am. Chem. Soc.. 2013; 135: 10022
  • 125 L. J. Rono,, H. G. Yayla,, D. Y. Wang,, M. F. Armstrong,, R. R. Knowles,. J. Am. Chem. Soc.. 2013; 135: 17735
  • 126 L. Lin,, X. Bai,, X. Ye,, X. Zhao,, C.-H. Tan,, Z. Jiang,. Angew. Chem. Int. Ed.. 2017; 56: 13842
  • 127 T. Maji,, A. Karmakar,, O. Reiser,. J. Org. Chem.. 2011; 76: 736
  • 128 M. Hou,, L. Lin,, X. Chai,, X. Zhao,, B. Qiao,, Z. Jiang,. Chem. Sci.. 2019; 10: 6629
  • 129 M. A. Emmanuel,, N. R. Greenberg,, D. G. Oblinsky,, T. K. Hyster,. Nature (London). 2016; 540: 414
  • 130 B. Qiao,, C. Li,, X. Zhao,, Y. Yin,, Z. Jiang,. Chem. Commun. (Cambridge). 2019; 55: 7534
  • 131 T. Shao,, Y. Li,, N. Ma,, C. Li,, G. Chai,, X. Zhao,, B. Qiao,, Z. Jiang,. iScience. 2019; 16: 410
  • 133 J. J. Li,. Heterocyclic Chemistry in Drug Discovery. Wiley; Hoboken, NJ 2013
  • 134 K. Cao,, S. M. Tan,, R. Lee,, S. Yang,, H. Jia,, X. Zhao,, B. Qiao,, Z. Jiang,. J. Am. Chem. Soc.. 2019; 141: 5437
  • 135 Y. Liu,, X. Liu,, J. Li,, X. Zhao,, B. Qiao,, Z. Jiang,. Chem. Sci.. 2018; 9: 8094
  • 136 J. Li,, M. Kong,, B. Qiao,, R. Lee,, X. Zhao,, Z. Jiang,. Nat. Commun.. 2018; 9: 2445
  • 137 D. Uraguchi,, N. Kinoshita,, T. Kizu,, T. Ooi,. J. Am. Chem. Soc.. 2015; 137: 13768
  • 138 H. B. Hepburn,, P. Melchiorre,. Chem. Commun. (Cambridge). 2016; 52: 3520
  • 139 Y. Yin,, Y. Dai,, H. Jia,, J. Li,, L. Bu,, B. Qiao,, X. Zhao,, Z. Jiang,. J. Am. Chem. Soc.. 2018; 140: 6083
  • 140 R. S. J. Proctor,, R. J. Phipps,. Angew. Chem. Int. Ed.. 2019; 58: 13666
  • 141 W.-M. Cheng,, R. Shang,, Y. Fu,. ACS Catal.. 2017; 7: 907
  • 142 R. S. J. Proctor,, H. J. Davis,, R. J. Phipps,. Science (Washington, D. C.). 2018; 360: 419
  • 143 X. Liu,, Y. Liu,, G. Chai,, B. Qiao,, X. Zhao,, Z. Jiang,. Org. Lett.. 2018; 20: 6298
  • 144 D. Zheng,, A. Studer,. Angew. Chem. Int. Ed.. 2019; 58
  • 145 Hydrogen-Transfer Reactions Hynes, J. T. Klinman, J. P. Limback, H.-H. Schowen, R. L., Eds.; Wiley-VCH: Weinheim, Germany (2007); Vols. 1–4.
  • 146 Hydrogen Transfer Reactions: Reductions and Beyond Guillena, G. Ramón, D. J., Eds.; Springer: Switzerland (2016).
  • 148 Y. Nakano,, K. F. Biegasiewicz,, T. K. Hyster,. Curr. Opin. Chem. Biol.. 2019; 49: 16
  • 150 X.-Z. Fan,, J.-W. Rong,, H.-L. Wu,, Q. Zhou,, H.-P. Deng,, J.-D. Tan,, C.-W. Xue,, L.-Z. Wu,, H.-R. Tao,, J. Wu,. Angew. Chem. Int. Ed.. 2018; 57: 8514
  • 151 L. M. Stateman,, K. M. Nakafuku,, D. A. Nagib,. Synthesis. 2018; 50: 1569
  • 152 K. A. Margrey,, D. A. Nicewicz,. Acc. Chem. Res.. 2016; 49: 1997
  • 153 C. Cassani,, G. Bergonzini,, C.-J. Wallentin,. Org. Lett.. 2014; 16: 4228
  • 154 J. D. Griffin,, M. A. Zeller,, D. A. Nicewicz,. J. Am. Chem. Soc.. 2015; 137: 11340
  • 155 D. J. Wilger,, N. J. Gesmundo,, D. A. Nicewicz,. Chem. Sci.. 2013; 4: 3160
  • 156 D. C. Miller,, G. J. Choi,, H. S. Orbe,, R. R. Knowles,. J. Am. Chem. Soc.. 2015; 137: 13492
  • 157 H. Wang,, N. T. Jui,. J. Am. Chem. Soc.. 2018; 140: 163
  • 158 A. J. Boyington,, C. P. Seath,, A. M. Zearfoss,, Z. Xu,, N. T. Jui,. J. Am. Chem. Soc.. 2019; 141: 4147
  • 159 D. S. Hamilton,, D. A. Nicewicz,. J. Am. Chem. Soc.. 2012; 134: 18577
  • 160 D. A. Nicewicz,, D. S. Hamilton,. Synlett. 2014; 25: 1191
  • 161 T. M. Nguyen,, N. Manohar,, D. A. Nicewicz,. Angew. Chem. Int. Ed.. 2014; 53: 6198
  • 162 T. E. Müller,, K. C. Hultzsch,, M. Yus,, F. Foubelo,, M. Tada,. Chem. Rev.. 2008; 108: 3795
  • 163 J. C. K. Chu,, T. Rovis,. Angew. Chem. Int. Ed.. 2018; 57: 62
  • 164 N. A. Romero,, K. A. Margrey,, N. E. Tay,, D. A. Nicewicz,. Science (Washington, D. C.). 2015; 349: 1326
  • 165 K. A. Margrey,, A. Levens,, D. A. Nicewicz,. Angew. Chem. Int. Ed.. 2017; 56: 15644
  • 166 W. Chen,, Z. Huang,, N. E. S. Tay,, B. Giglio,, M. Wang,, H. Wang,, W. Zhanhong,, D. A. Nicewicz,, L. Zibo,. Science (Washington, D. C.). 2019; 364: 1170
  • 167 K. Qvortrup,, D. A. Rankic,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2014; 136: 626
  • 168 D. Hager,, D. W. C. MacMillan,. J. Am. Chem. Soc.. 2014; 136: 16986
  • 169 M. H. Shaw,, V. W. Shurtleff,, J. A. Terrett,, J. D. Cuthbertson,, D. W. C. MacMillan,. Science (Washington, D. C.). 2016; 352: 1304
  • 170 D. R. Heitz,, J. C. Tellis,, G. A. Molander,. J. Am. Chem. Soc.. 2016; 138: 12715
  • 171 B. J. Shields,, A. G. Doyle,. J. Am. Chem. Soc.. 2016; 138: 12719
  • 172 J. A. Milligan,, J. P. Phelan,, S. O. Badir,, G. A. Molander,. Angew. Chem. Int. Ed.. 2019; 58: 6152