Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00026
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.3 Single-Electron-Transfer Oxidation and Reduction Involving Metal Complexes other than Samarium

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Recent advances in the field of radical organic chemistry involving single-electron transfer (SET) are highlighted in this chapter. The focus is on processes between organic molecules and metal complexes that facilitate the creation of challenging covalent bonds. A selection of oxidation and reduction reactions is reported, with special attention paid to enantioselective reactions. Mechanistic discussions are also provided.

 
  • 1 Jahn U. Top. Curr. Chem. 2012; 320: 121
  • 2 Jahn U. Top. Curr. Chem. 2012; 320: 191
  • 3 Jahn U. Top. Curr. Chem. 2012; 320: 323
  • 4 Guo F, Clift MD, Thomson RJ. Eur. J. Org. Chem. 2012; 4881
  • 5 Galakatos NG, Hancock JEH, Morgan OM, Roberts MR, Wallace JK. Synthesis 1978; 472
  • 6 Skarżewski J, Zoń J. Synth. Commun. 1995; 25: 2953
  • 7 Han W, Yang Y, Zhu Y, Shi Y. Org. Biomol. Chem. 2019; 17: 6998
  • 8 Yoshioka E, Imoto Y, Yoshikawa T, Kohtani S, Miyabe H. Synlett 2017; 28: 863
  • 9 Cao J.-J, Wang X, Wang S.-Y, Ji S.-J. Chem. Commun. (Cambridge) 2014; 50: 12892
  • 10 Ivanoff D, Spassoff A. Bull. Soc. Chim. Fr. 1935; 2: 76
  • 11 Baran PS, Richter JM. J. Am. Chem. Soc. 2004; 126: 7450
  • 12 Baran PS, Richter JM, Lin DW. Angew. Chem. Int. Ed. 2005; 44: 609
  • 13 Baran PS, DeMartino MP. Angew. Chem. Int. Ed. 2006; 45: 7083
  • 14 DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
  • 15 Robinson EE, Thomson RJ. J. Am. Chem. Soc. 2018; 140: 1956
  • 16 Maryanoff CA, Maryanoff BE, Tang R, Mislow K. J. Am. Chem. Soc. 1973; 95: 5839
  • 17 Goddard J.-P, Gomez C, Brebion F, Beauvière S, Fensterbank L, Malacria M. Chem. Commun. (Cambridge) 2007; 2929
  • 18 Brebion F, Vincent G, Chelli S, Kwasnieski O, Najera F, Delouvrié B, Marek I, Derat E, Goddard J.-P, Malacria M, Fensterbank L. Chem.–Asian J. 2011; 6: 1825
  • 19 Martinez Mallorquin R, Vincent G, Derat E, Malacria M, Goddard J.-P, Fensterbank L. Aust. J. Chem. 2013; 66: 346
  • 20 Vincent G, Cheli S, Martinez Mallorquin R, Abramovitch A, Beauvière S, Gomez C, Brebion F, Marek I, Malacria M, Goddard J.-P, Fensterbank L. C. R. Chim. 2016; 19: 403
  • 21 Sorin G, Martinez Mallorquin R, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
  • 22 Crossley SWM, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
  • 23 Okamoto T, Oka S. Tetrahedron Lett. 1981; 22: 2191
  • 24 Mukaiyama T, Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17
  • 25 Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 26 OʼNeill PM, Hindley S, Pugh MD, Davies J, Bray PG, Park BK, Kapu DS, Ward SA, Stocks PA. Tetrahedron Lett. 2003; 44: 8135
  • 27 Prateeptongkum S, Jovel I, Jackstell R, Vogl N, Weckbecker C, Beller M. Chem. Commun. (Cambridge) 2009; 1990
  • 28 Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
  • 29 Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
  • 30 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science (Washington, D. C.) 2015; 348: 886
  • 31 Kuo JL, Hartung J, Han A, Norton JR. J. Am. Chem. Soc. 2015; 137: 1036
  • 32 Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
  • 33 Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
  • 34 Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
  • 35 Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Angew. Chem. Int. Ed. 2018; 57: 182
  • 36 Shao X, Hong X, Lu L, Shen Q. Tetrahedron 2019; 75: 4156
  • 37 Shen Y, Qi J, Mao Z, Cui S. Org. Lett. 2016; 18: 2722
  • 38 Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
  • 39 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 40 Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
  • 41 Zhang T, Wu Y.-H, Wang N.-X, Xing Y. Synthesis 2019; 51: 4531
  • 42 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
  • 43 Xu P, Guo S, Wang L, Tang P. Angew. Chem. Int. Ed. 2014; 53: 5955
  • 44 Liu W, Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
  • 45 Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. J. Am. Chem. Soc. 2014; 136: 6842
  • 46 Lorente A, Lamariano-Merketegi J, Albericio F, Álvarez M. Chem. Rev. 2013; 113: 4567
  • 47 Zhang M, Zhao Y, Chen W. Synthesis 2017; 49: 1342
  • 48 Groves JT. Nat. Chem. 2014; 6: 89
  • 49 Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
  • 50 Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
  • 51 Huang X, Zhuang T, Kates PA, Gao H, Chen X, Groves JT. J. Am. Chem. Soc. 2017; 139: 15407
  • 52 Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard III WA, Groves JT. Science (Washington, D. C.) 2012; 337: 1322
  • 53 Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 54 Saha NK, Mitra NK, Johnson KF, Merner BL. Org. Lett. 2018; 20: 6855
  • 55 Shalit H, Libman A, Pappo D. J. Am. Chem. Soc. 2017; 139: 13404
  • 56 Reiss H, Shalit H, Vershinin V, More NY, Forckosh H, Pappo D. J. Org. Chem. 2019; 84: 7950
  • 57 Boess E, Van Hoof M, Birdsall SL, Klussmann M. J. Org. Chem. 2020; 85: 1972
  • 58 Li Y, Wang R, Wang T, Cheng X.-F, Zou X, Fei F, Wang XS. Angew. Chem. Int. Ed. 2017; 56: 15436
  • 59 Bekkaye M, Masson G. Org. Lett. 2014; 16: 1510
  • 60 Ton TMU, Tejo C, Tania S, Chang JWW, Chan PWH. J. Org. Chem. 2011; 76: 4894
  • 61 Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew. Chem. Int. Ed. 2010; 49: 10154
  • 62 Chen T, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2018; 140: 3139
  • 63 Huang T, Saga Y, Guo H, Yoshimura A, Ogawa A, Han L.-B. J. Org. Chem. 2018; 83: 8743
  • 64 Hou H, Xu Y, Yang H, Yan C, Shi Y, Zhu S. Org. Biomol. Chem. 2019; 17: 8175
  • 65 Li J.-A, Zhang P.-Z, Liu K, Shoberu A, Zou J.-P, Zhang W. Org. Lett. 2017; 19: 4704
  • 66 Zhang P.-Z, Zhang L, Li J.-A, Shoberu A, Zou J.-P, Zhang W. Org. Lett. 2017; 19: 5537
  • 67 Xu K, Hu H, Yang F, Wu Y. Eur. J. Org. Chem. 2013; 319
  • 68 Berger O, Montchamp J.-L. J. Org. Chem. 2019; 84: 9239
  • 69 Zhou P, Jiang Y.-J, Zou J.-P, Zhang W. Synthesis 2012; 44: 1043
  • 70 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyina NA. Synthesis 2001; 1453
  • 71 Liu Y, Wang Q.-L, Chen Z, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-A, Zhou Q. Beilstein J. Org. Chem. 2019; 15: 256
  • 72 Wang Y.-F, Toh KK, Ng EPJ, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
  • 73 Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
  • 74 Wang D, Ren R, Zhu C. J. Org. Chem. 2016; 81: 8043
  • 75 Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 76 Ren H, Song J.-R, Li Z.-Y, Pan W.-D. Org. Lett. 2019; 21: 6774
  • 77 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 78 Hwang JY, Baek JH, Shin TI, Shin JH, Oh JW, Kim KP, You Y, Kang EJ. Org. Lett. 2016; 18: 4900
  • 79 Hwang JY, Ji AY, Lee SH, Kang EJ. Org. Lett. 2020; 22: 16
  • 80 Ekomié A, Lefèvre G, Fensterbank L, Lacôte E, Malacria M, Ollivier C, Jutand A. Angew. Chem. Int. Ed. 2012; 51: 6942
  • 81 Kyne SH, Lévêque C, Zheng S, Fensterbank L, Jutand A, Ollivier C. Tetrahedron 2016; 72: 7727
  • 82 Kyne SH, Clémancey M, Blondin G, Derat E, Fensterbank L, Jutand A, Lefèvre G, Ollivier C. Organometallics 2018; 37: 761
  • 83 Pulikottil FT, Pilli R, Murugesan V, Krishnan CG, Rasappan R. ChemCatChem 2019; 11: 2438
  • 84 Wakabayashi K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2001; 123: 5374
  • 85 Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
  • 86 Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
  • 87 Clark AJ. Chem. Soc. Rev. 2002; 31: 1
  • 88 Sebren LJ, Devery III JJ, Stephenson CRJ. ACS Catal. 2014; 4: 703
  • 89 Nagashima H, Itoh K. J. Synth. Org. Chem., Jpn. 1995; 53: 298
  • 90 Clark AJ. Eur. J. Org. Chem. 2016; 2231
  • 91 Radicals in Synthesis III. Heinrich MR, Gansäuer A. 320. Springer; Berlin 2012
  • 92 Pintauer T, Matyjaszewski K. Chem. Soc. Rev. 2008; 37: 1087
  • 93 Wang J.-S, Matyjaszewski K. J. Am. Chem. Soc. 1995; 117: 5614
  • 94 Kato M, Kamigaito M, Sawamoto M, Higashimura T. Macromolecules 1995; 28: 1721
  • 95 Nagashima H, Ara K, Wakamatsu H, Itoh K. J. Chem. Soc., Chem. Commun. 1985; 518
  • 96 Yang D, Yan Y.-L, Zheng B.-F, Gao Q, Zhu N.-Y. Org. Lett. 2006; 8: 5757
  • 97 Bernhardt PV. J. Am. Chem. Soc. 1997; 119: 771
  • 98 Clark AJ, De Campo F, Deeth RJ, Filik RP, Gatard S, Hunt NA, Lastécouères D, Thomas GH, Verlhac J.-B, Wongtap H. J. Chem. Soc., Perkin Trans. 1 2000; 671
  • 99 Diaba F, Martínez-Laporta A, Bonjoch J. J. Org. Chem. 2014; 79: 9365
  • 100 Murata Y, Shimada T, Nishikata T. Bull. Chem. Soc. Jpn. 2019; 92: 1419
  • 101 Cui JJ. J. Med. Chem. 2014; 57: 4427
  • 102 Jeschke P. Pest Manage. Sci. 2017; 73: 1053
  • 103 Wakselman C, Kaziz C. J. Fluorine Chem. 1986; 33: 347
  • 104 Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal. 2018; 8: 7287
  • 105 Wakselman C. J. Fluorine Chem. 1992; 59: 367
  • 106 Furin GG. Russ. Chem. Rev. (Engl. Transl.) 2000; 69: 491
  • 107 Handbook of Fluorous Chemistry. Gladysz JA, Curran DP, Horváth IT. Wiley-VCH; Weinheim, Germany 2004
  • 108 Wu G, Jacobi von Wangelin A. Chem. Sci. 2018; 9: 1795
  • 109 Prieto A, Bouyssi D, Monteiro N. J. Org. Chem. 2017; 82: 3311
  • 110 Prieto A, Bouyssi D, Monteiro N. ACS Catal. 2016; 6: 7197
  • 111 Pratsch G, Heinrich MR. Top. Curr. Chem. 2012; 320: 33
  • 112 Vaillard SE, Schulte B, Studer A, Modern Arylation Methods. Ackermann L. Wiley-VCH; Weinheim, Germany 2009: 475–511
  • 113 Kindt S, Heinrich MR. Synthesis 2016; 48: 1597
  • 114 Fehler SK, Heinrich MR. Synlett 2015; 26: 580
  • 115 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 116 Guo Z, Li M, Mou X.-Q, He G, Xue X.-S, Chen G. Org. Lett. 2018; 20: 1684
  • 117 Motherwell WB, Pennell AMK. J. Chem. Soc., Chem. Commun. 1991; 877
  • 118 Bonfand E, Forslund L, Motherwell WB, Vázqez S. Synlett 2000; 475
  • 119 Rashid SO, Almadhhi SS, Berrisford DJ, Raftery J, Vitorica-Yrezabal I, Whitehead G, Quayle P. Tetrahedron 2019; 75: 2413
  • 120 Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 121 Gansäuer A, Justicia J, Fan C.-A, Worgull D, Piestert F. Top. Curr. Chem. 2007; 279: 25
  • 122 Gansäuer A, Hildebrandt S, Vogelsang E, Flowers II RA. Dalton Trans. 2016; 45: 448
  • 123 Gansäuer A, von Laufenberg D, Kube C, Dahmen T, Michelmann A, Behlendorf M, Sure R, Seddiqzai M, Grimme S, Sadasivam DV, Fianu GD, Flowers II RA. Chem.–Eur. J. 2015; 21: 280
  • 124 Gansäuer A, Kube C, Daasbjerg K, Sure R, Grimme S, Fianu GD, Sadasivam DV, Flowers II RA. J. Am. Chem. Soc. 2014; 136: 1663
  • 125 Henriques DSG, Zimmer K, Klare S, Meyer A, Rojo-Wiechel E, Bauer B, Sure R, Grimme S, Schiemann O, Flowers II RA, Gansäuer A. Angew. Chem. Int. Ed. 2016; 55: 7671
  • 126 Streuff J, Gansäuer A. Angew. Chem. Int. Ed. 2015; 54: 14232
  • 127 Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
  • 128 Kagan HB. Tetrahedron 2003; 59: 10351
  • 129 Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
  • 130 McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
  • 131 Martinet S, Méou A, Brun P. Eur. J. Org. Chem. 2009; 2306
  • 132 Garzino F, Méou A, Brun P. Tetrahedron Lett. 2000; 41: 9803
  • 133 Garzino F, Méou A, Brun P. Eur. J. Org. Chem. 2003; 1410
  • 134 Snider BB, Wan BY.-F, Buckman BO, Foxman BM. J. Org. Chem. 1991; 56: 328
  • 135 Benkovics T, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 9153
  • 136 Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
  • 137 Beeson TD, Mastracchio A, Hong J.-B, MacMillan DWC. Science (Washington, D. C.) 2007; 316: 582
  • 138 Mečiarová M, Tisovský P, Šebesta R. New J. Chem. 2016; 40: 4855
  • 139 Rendler S, MacMillan DWC. J. Am. Chem. Soc. 2010; 132: 5027
  • 140 Leth LA, Naesborg L, Reyes-Rodríguez GJ, Tobiesen HN, Iversen MV, Jørgensen KA. J. Am. Chem. Soc. 2018; 140: 12687
  • 141 Lin J.-S, Wang F.-L, Dong X.-Y, He W.-W, Yuan Y, Chen S, Liu X.-Y. Nat. Commun. 2017; 8: 14841
  • 142 Cheng Y.-F, Dong X.-Y, Gu Q.-S, Yu Z.-L, Liu X.-Y. Angew. Chem. Int. Ed. 2017; 56: 8883
  • 143 Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
  • 144 Lin J.-S, Li T.-T, Liu J.-R, Jiao G.-Y, Gu Q.-S, Cheng J.-T, Guo Y.-L, Hong X, Liu X.-Y. J. Am. Chem. Soc. 2019; 141: 1074
  • 145 Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
  • 146 Wang D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
  • 147 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science (Washington, D. C.) 2016; 351: 681
  • 148 Wu L, Wang F, Chen P, Liu G. J. Am. Chem. Soc. 2019; 141: 1887
  • 149 Wang Z, Yin H, Fu GC. Nature (London) 2018; 563: 379
  • 150 Wang Y, Wen X, Cui X, Zhang XP. J. Am. Chem. Soc. 2018; 140: 4792
  • 151 Hu Y, Lang K, Li C, Gill JB, Kim I, Lu H, Fields KB, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 18160
  • 152 Lang K, Torker S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 12388
  • 153 Wang Y, Wen X, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2017; 139: 1049
  • 154 Bau MA, Wiesler S, Younas SL, Streuff J. Chem.–Eur. J. 2019; 25: 10531
  • 155 Streuff J, Feurer M, Bichovski P, Frey G, Gellrich U. Angew. Chem. Int. Ed. 2012; 51: 8661
  • 156 Guo Q.-X, Wu Z.-J, Luo Z.-B, Liu Q.-Z, Ye J.-L, Luo S.-W, Cun L.-F, Gong L.-Z. J. Am. Chem. Soc. 2007; 129: 13927
  • 157 Egami H, Katsuki T. J. Am. Chem. Soc. 2009; 131: 6082
  • 158 Hewgley JB, Stahl SS, Kozlowski MC. J. Am. Chem. Soc. 2008; 130: 12232
  • 159 Hon S.-W, Li C.-H, Kuo J.-H, Barhate NB, Liu Y.-H, Wang Y, Chen C.-T. Org. Lett. 2001; 3: 869
  • 160 Narute S, Parnes R, Toste FD, Pappo D. J. Am. Chem. Soc. 2016; 138: 16553