Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00182
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.10 Radical Chemistry in Flow

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The past two decades have witnessed a rapid growth in flow-based organic synthesis and synthesis involving radical reactions in flow systems is no exception. Flow microreactors have large surface-to-volume ratios that become available by the employment of tiny channels, and this allows radical reactions to occur with efficient heat transfer and diffusion. Flow photomicroreactors with thin, glass-made channels allow for efficient light penetration, which enables highly efficient photo-radical reactions. This chapter highlights recent advances in both thermal and photo-induced radical reactions, which have achieved increased efficiency by using flow reaction systems.

 
  • 1 Baumann M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020;
  • 2 Hughes DL. Org. Process Res. Dev. 2020;
  • 3 Fukuyama T, Kobayashi M, Rahman MT, Kamata N, Ryu I. Org. Lett. 2008; 10: 533
  • 4 Fukuyama T, Ryu I, Encyclopedia of Radicals in Chemistry, Biology and Materials. Studer A, Chatgilialoglu C. Wiley; Chichester, UK 2012. 2. 1243–1258
  • 5 Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K. J. Photochem. Photobiol., C 2016; 29: 107
  • 6 Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
  • 7 Telmesani R, Sun AC, Beeler AB, Stephenson CRJ, Science of Synthesis: Flow Chemistry in Organic Synthesis. Jamison TF, Koch G. Thieme; Stuttgart 2018: 103
  • 8 Odedra A, Geyer K, Gustafsson T, Gilmour R, Seeberger PH. Chem. Commun. (Cambridge) 2008; 3025
  • 9 Fukuyama T, Fujita Y, Miyoshi H, Ryu I, Kao S.-C, Wu Y.-K. Chem. Commun. (Cambridge) 2018; 54: 5582
  • 10 Min K, Lee T, Park C, Wu Z, Girault HH, Ryu I, Fukuyama T, Mukai Y, Kim D. Angew. Chem. Int. Ed. 2010; 49: 7063
  • 11 Cossy J, Ranaivosata J.-L, Bellosta V. Tetrahedron Lett. 1994; 35: 8161
  • 12 Fukuyama T, Fujita Y, Rashid MA, Ryu I. Org. Lett. 2016; 18: 5444
  • 13 Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
  • 14 Fukuyama T, Rahman MT, Kamata N, Ryu I. Beilstein J. Org. Chem. 2009; 5: 34
  • 15 Ryu I, Miyazato H, Kuriyama H, Matsu K, Tojino M, Fukuyama T, Minakata S, Komatsu M. J. Am. Chem. Soc. 2003; 125: 5632
  • 16 Wetter C, Studer A. Chem. Commun. (Cambridge) 2004; 174
  • 17 Wienhöfer IC, Studer A, Rahman MT, Fukuyama T, Ryu I. Org. Lett. 2009; 11: 2457
  • 18 Ehrich H, Linke D, Morgenschweis K, Baerns M, Jähnisch K. Chimia 2002; 56: 647
  • 19 Matsubara H, Hino Y, Tokizane M, Ryu I. Chem. Eng. J. (Amsterdam, Neth.) 2011; 167: 567
  • 20 Strauss FJ, Cantillo D, Guerra J, Kappe CO. React. Chem. Eng. 2016; 1: 472
  • 21 Fukuyama T, Tokizane M, Matsui A, Ryu I. React. Chem. Eng. 2016; 1: 613
  • 22 Manabe Y, Kitawaki Y, Nagasaki M, Fukase K, Matsubara H, Hino Y, Fukuyama T, Ryu I. Chem.–Eur. J. 2014; 20: 12750
  • 23 Sugimoto A, Sumino Y, Takagi M, Fukuyama T, Ryu I. Tetrahedron Lett. 2006; 47: 6197
  • 24 Sugimoto A, Fukuyama T, Sumino Y, Takagi M, Ryu I. Tetrahedron 2009; 65: 1593
  • 25 Renneke RF, Pasquali M, Hill CL. J. Am. Chem. Soc. 1990; 112: 6585
  • 26 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 27 Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Angew. Chem. Int. Ed. 2018; 57: 4078
  • 28 Fagnoni M, Bonassi F, Palmieri A, Protti S, Ravelli D, Ballini R. Adv. Synth. Catal. 2014; 356: 753
  • 29 Sumino S, Uno M, Fukuyama T, Ryu I, Matsuura M, Yamamoto A, Kishikawa Y. J. Org. Chem. 2017; 82: 5469
  • 30 Magallanes G, Kärkäs MD, Bosque I, Lee S, Maldonado S, Stephenson CRJ. ACS Catal. 2019; 9: 2252
  • 31 Nakayama Y, Ando G, Abe M, Koike T, Akita M. ACS Catal. 2019; 9: 6555
  • 32 Park BY, Pirnot MT, Buchwald SL. J. Org. Chem. 2020; 85: 3234