Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00233
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.1 Organic Electron Donors in Electron-Transfer Reactions

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The field of organic electron donors is large and diverse, both in terms of the structures of the donors and the structures of the acceptors. In the past 15 years, organic donors have been developed that show remarkable strength, with ground-state or excited-state oxidation potentials rivalling even the most reactive metals. At the other end of the scale of reactivity, highly reactive oxidizing agents are now available upon photoactivation of a number of organic structures. The first part of this chapter reviews organic electron donors that are based upon an alkene that is activated by strongly electron-releasing substituents; these donors can be active in the ground and/or excited states. The chapter also covers anionic organic donors that emerged in the field of SRN1 and base-induced homolytic aromatic substitution (BHAS) reactions, as well as substrate-based anionic donors including borates and silicates. The use of photoexcited organic dyes as electron donors is described and, finally, some of the recent research with very weak organic donors is highlighted.

 
  • 1 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 2 Prier CK, Rankic DA, MacMillan DWC. Chem. Rev. 2013; 113: 5322
  • 3 Pruett RL, Barr JT, Rapp KE, Bahner CT, Gibson JD, Lafferty Jr RH. J. Am. Chem. Soc. 1950; 72: 3646
  • 4 Briscoe MW, Chambers RD, Mullins SJ, Nakamura T, Vaughan JFS, Drakesmith FG. J. Chem. Soc., Perkin Trans. 1 1994; 3115
  • 5 Médebielle M, Dolbier Jr WR. J. Fluorine Chem. 2008; 129: 930
  • 6 Aït-Mohand S, Takechi N, Médebielle M, Dolbier Jr WR. Org. Lett. 2001; 3: 4271
  • 7 Burkholder C, Dolbier WR, Médebielle M. J. Org. Chem. 1998; 63: 5385
  • 8 Burkholder C, Dolbier Jr WR, Médebielle M. Tetrahedron Lett. 1997; 38: 821
  • 9 Mahesh M, Murphy JA, LeStrat F, Wessel HP. Beilstein J. Org. Chem. 2009; 5: 1
  • 10 Glaser F, Larsen CB, Kerzig C, Wenger OS. Photochem. Photobiol. Sci. 2020; 19: 1035
  • 11 Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
  • 12 Wudl F, Smith GM, Hufnagel EJ. J. Chem. Soc. D 1970; 1453
  • 13 Murphy JA, Radicals in Organic Synthesis. Renaud P, Sibi MP. Wiley-VCH; Weinheim, Germany 2001. 1. 298
  • 14 Lampard C, Murphy JA, Lewis N. J. Chem. Soc., Chem. Commun. 1993; 295
  • 15 Callaghan O, Lampard C, Kennedy AR, Murphy JA. J. Chem. Soc., Perkin Trans. 1 1999; 995
  • 16 Fletcher R, Kizil M, Lampard C, Murphy JA, Roome SJ. J. Chem. Soc., Perkin Trans. 1 1998; 2341
  • 17 Allongue P, Delamar M, Desbat P, Fagebaume O, Hitmi R, Pinson J, Savéant J.-M. J. Am. Chem. Soc. 1997; 119: 201
  • 18 Pause L, Robert M, Savéant J.-M. J. Am. Chem. Soc. 1999; 121: 7158
  • 19 Murphy JA, Khan TA, Zhou S.-z, Thomson DW, Mahesh M. Angew. Chem. Int. Ed. 2005; 44: 1356
  • 20 Murphy JA. J. Org. Chem. 2014; 79: 3731
  • 21 Doni E, Murphy JA. Chem. Commun. (Cambridge) 2014; 50: 6073
  • 22 Rohrbach S, Shah RS, Tuttle T, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 11454
  • 23 Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. J. Org. Chem. 2018; 83: 10813
  • 24 Murphy JA, Zhou S.-z, Thomson DW, Schoenebeck F, Mahesh M, Park SR, Tuttle T, Berlouis LEA. Angew. Chem. Int. Ed. 2007; 46: 5178
  • 25 Taton TA, Chen P. Angew. Chem. Int. Ed. 1996; 35: 1011
  • 26 Schoenebeck F, Murphy JA, Zhou S.-z, Uenoyama Y, Miclo Y, Tuttle T. J. Am. Chem. Soc. 2007; 129: 13368
  • 27 Jolly PI, Zhou S.-z, Thomson DW, Garnier J, Parkinson JA, Tuttle T, Murphy JA. Chem. Sci. 2012; 3: 1675
  • 28 Murphy JA, Garnier J, Park SR, Schoenebeck F, Zhou S.-z, Turner AT. Org. Lett. 2008; 10: 1227
  • 29 Cutulic SPY, Murphy JA, Farwaha H, Zhou S.-z, Chrystal E. Synlett 2008; 2132
  • 30 Cutulic SPY, Findlay NJ, Zhou S.-z, Chrystal EJT, Murphy JA. J. Org. Chem. 2009; 74: 8713
  • 31 Jolly PI, Fleary-Roberts N, OʼSullivan S, Doni E, Zhou S, Murphy JA. Org. Biomol. Chem. 2012; 10: 5807
  • 32 Tintori G, Nabokoff P, Buhaibeh R, Bergé-Lefranc D, Redon S, Broggi J, Vanelle P. Angew. Chem. Int. Ed. 2018; 57: 3148
  • 33 Broggi J, Rollet M, Clément J.-L, Canard G, Terme T, Gigmes D, Vanelle P. Angew. Chem. Int. Ed. 2016; 55: 5994
  • 34 Broggi J, Terme T, Vanelle P. Angew. Chem. Int. Ed. 2014; 53: 384
  • 35 Hanson SS, Richard NA, Dyker CA. Chem.–Eur. J. 2015; 21: 8052
  • 36 Hanson SS, Doni E, Traboulsee KT, Coulthard G, Murphy JA, Dyker CA. Angew. Chem. Int. Ed. 2015; 54: 11236
  • 37 Martin JD, Dyker CA. Can. J. Chem. 2018; 96: 522
  • 38 Burgoyne MM, MacDougall TM, Haines ZN, Conrad JW, Calhoun LA, Decken A, Dyker CA. Org. Biomol. Chem. 2019; 17: 9726
  • 39 Cahard E, Schoenebeck F, Garnier J, Cutulic SPY, Zhou S, Murphy JA. Angew. Chem. Int. Ed. 2012; 51: 3673
  • 40 OʼSullivan S, Doni E, Tuttle T, Murphy JA. Angew. Chem. Int. Ed. 2014; 53: 474
  • 41 Doni E, Mondal B, OʼSullivan S, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2013; 135: 10934
  • 42 Doni E, OʼSullivan S, Murphy JA. Angew. Chem. Int. Ed. 2013; 52: 2239
  • 43 Filippini G, Silvi M, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 4447
  • 44 Bahamonde A, Melchiorre P. J. Am. Chem. Soc. 2016; 138: 8019
  • 45 Bieszczad B, Perego LA, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 16878
  • 46 Bunnett JF, Kim JK. J. Am. Chem. Soc. 1970; 92: 7463
  • 47 Kornblum N, Michel RE, Kerber RC. J. Am. Chem. Soc. 1966; 88: 5660
  • 48 Kornblum N. Angew. Chem. Int. Ed. Engl. 1975; 14: 734
  • 49 Russell GA, Danen WC. J. Am. Chem. Soc. 1966; 88: 5663
  • 50 Budén ME, Bardagi JI, Puiatti M, Rossi RA. J. Org. Chem. 2017; 82: 8325
  • 51 Scamehorn RG, Hardacre JM, Lukanich JM, Sharpe LR. J. Org. Chem. 1984; 49: 4881
  • 52 Caminos DA, Puiatti M, Bardagi JI, Peñéñory AB. RSC Adv. 2017; 7: 31148
  • 53 Rossi RA, Pierini AB, Peñéñory AB. Chem. Rev. 2003; 103: 71
  • 54 Drapeau MP, Fabre I, Grimaud L, Ciofini I, Ollevier T, Taillefer M. Angew. Chem. Int. Ed. 2015; 54: 10587
  • 55 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
  • 56 Lennox AJJ. Angew. Chem. Int. Ed. 2018; 57: 14686
  • 57 Rohrbach S, Murphy JA, Tuttle T. J. Am. Chem. Soc. 2020; 142: 14871
  • 58 Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
  • 59 Li M, Gutierrez O, Berritt S, Pascual-Escudero A, Yeşilçimen A, Yang X, Adrio J, Huang G, Nakamaru-Ogiso E, Kozlowski MC, Walsh PJ. Nat. Chem. 2017; 9: 997
  • 60 Li M, Berritt S, Matuszewski L, Deng G, Pascual-Escudero A, Panetti GB, Poznik M, Yang X, Chruma JJ, Walsh PJ. J. Am. Chem. Soc. 2017; 139: 16327
  • 61 Nocera G, Murphy JA. Synthesis 2020; 52: 327
  • 62 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 63 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
  • 64 Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 65 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LEA, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
  • 66 Roman DS, Takahashi Y, Charette AB. Org. Lett. 2011; 13: 3242
  • 67 Sun C.-L, Gu Y.-F, Wang B, Shi Z.-J. Chem.–Eur. J. 2011; 17: 10844
  • 68 Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476
  • 69 Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
  • 70 Zhou S, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2014; 136: 17818
  • 71 Wu Y, Wong SM, Mao F, Chan TL, Kwong FY. Org. Lett. 2012; 14: 5306
  • 72 Zhang L, Yang H, Jiao L. J. Am. Chem. Soc. 2016; 138: 7151
  • 73 Liu W, Cao H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 74 Yang H, Zhang L, Jiao L. Chem.–Eur. J. 2017; 23: 65
  • 75 Barham JP, Coulthard G, Kane RG, Delgado N, John MP, Murphy JA. Angew. Chem. Int. Ed. 2016; 55: 4492
  • 76 Wu Y, Choy PY, Kwong FY. Org. Biomol. Chem. 2014; 12: 6820
  • 77 Paira R, Singh B, Hota PK, Ahmed J, Sau SC, Johnpeter JP, Mandal SK. J. Org. Chem. 2016; 81: 2432
  • 78 Banik A, Paira R, Shaw BK, Vijaykumar G, Mandal SK. J. Org. Chem. 2018; 83: 3236
  • 79 Ahmed J, Sreejyothi P, Vijaykumar G, Jose A, Raj M, Mandal SK. Chem. Sci. 2017; 8: 7798
  • 80 Tanimoro K, Ueno M, Takeda K, Kirihata M, Tanimori S. J. Org. Chem. 2012; 77: 7844
  • 81 Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 3556
  • 82 Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
  • 83 Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
  • 84 Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
  • 85 Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Commun. (Cambridge) 2012; 48: 6966
  • 86 Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem. Commun. (Cambridge) 2016; 52: 9877
  • 87 Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
  • 88 Cartier A, Levernier E, Corcé V, Fukuyama T, Dhimane A.-L, Ollivier C, Ryu I, Fensterbank L. Angew. Chem. Int. Ed. 2019; 58: 1789
  • 89 Uygur M, Danelzik T, García Mancheño O. Chem. Commun. (Cambridge) 2019; 55: 2980
  • 90 Jackl MK, Legnani L, Morandi B, Bode JW. Org. Lett. 2017; 19: 4696
  • 91 Cao Z.-Y, Ghosh T, Melchiorre P. Nat. Commun. 2018; 9: 3274
  • 92 Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
  • 93 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 94 Chenneberg L, Lévêque C, Corcé V, Baralle A, Goddard J.-P, Ollivier C, Fensterbank L. Synlett 2016; 27: 731
  • 95 Heitz DR, Rizwan K, Molander GA. J. Org. Chem. 2016; 81: 7308
  • 96 Gerleve C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 15468
  • 97 Lima F, Grunenberg L, Rahman HBA, Labes R, Sedelmeier J, Ley SV. Chem. Commun. (Cambridge) 2018; 54: 5606
  • 98 Zhang L, Jiao L. Chem. Sci. 2018; 9: 2711
  • 99 Zhang L, Jiao L. J. Am. Chem. Soc. 2019; 141: 9124
  • 100 Hari DP, König B. Chem. Commun. (Cambridge) 2014; 50: 6688
  • 101 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 102 Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958
  • 103 Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
  • 104 Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
  • 105 Majek M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 2270
  • 106 Guo W, Lu L.-Q, Wang Y, Wang Y.-N, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 2265
  • 107 Gu L, Jin C, Liu J. Green Chem. 2015; 17: 3733
  • 108 Jadhav SD, Bakshi D, Singh A. J. Org. Chem. 2015; 80: 10187
  • 109 Meyer AU, Slanina T, Yao C.-J, König B. ACS Catal. 2016; 6: 369
  • 110 Neumann M, Zeitler K. Chem.–Eur. J. 2013; 19: 6950
  • 111 Pandey G, Hajra S. Angew. Chem. Int. Ed. 1994; 33: 1169
  • 112 Yang J, Felton GAN, Bauld NL, Krische MJ. J. Am. Chem. Soc. 2004; 126: 1634
  • 113 Davies J, Booth SG, Essafi S, Dryfe RAW, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
  • 114 Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Kawashima A, Takemoto Y, Miyabe H. J. Org. Chem. 2016; 81: 7217
  • 115 Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Takemoto Y, Miyabe H. Synlett 2015; 26: 265
  • 116 Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. ACS Catal. 2014; 4: 2530
  • 117 Ghosh I, König B. Angew. Chem. Int. Ed. 2016; 55: 7676
  • 118 Ghosh I, Ghosh T, Bardagi JI, König B. Science (Washington, D. C.) 2014; 346: 725
  • 119 Marchini M, Gualandi A, Mengozzi L, Franchi P, Lucarini M, Cozzi PG, Balzani V, Ceroni P. Phys. Chem. Chem. Phys. 2018; 20: 8071
  • 120 Neumeier M, Sampedro D, Májek M, de la Peña OʼShea VA, Jacobi von Wangelin A, Pérez-Ruiz R. Chem.–Eur. J. 2018; 24: 105
  • 121 Cole JP, Chen D.-F, Kudisch M, Pearson RM, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2020; 142: 13573
  • 122 Corbin DA, Lim C.-H, Miyake GM. Aldrichimica Acta 2019; 52: 7
  • 123 Du Y, Pearson RM, Lim C.-H, Sartor SM, Ryan MD, Yang H, Damrauer NH, Miyake GM. Chem.–Eur. J. 2017; 23: 10962
  • 124 Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, Read de Alaniz J. Chem. Commun. (Cambridge) 2015; 51: 11705
  • 125 Garrido-Castro AF, Salaverri N, Maestro MC, Alemán J. Org. Lett. 2019; 21: 5295
  • 126 Boyington AJ, Seath CP, Zearfoss AM, Xu Z, Jui NT. J. Am. Chem. Soc. 2019; 141: 4147
  • 127 Jin S, Dang HT, Haug GH, He R, Nguyen VD, Nguyen VT, Arman HD, Schanze KS, Larionov OV. J. Am. Chem. Soc. 2020; 142: 1603
  • 128 Lee DS, Kim CS, Iqbal N, Park GS, Son K.-s, Cho EJ. Org. Lett. 2019; 21: 9950
  • 129 Aukland MH, Šiaučiulis M, West A, Perry GJP, Procter DJ. Nat. Catal. 2020; 3: 163
  • 130 Martínez-Gualda AM, Cano R, Marzo L, Pérez-Ruiz R, Luis-Barrera J, Mas-Ballesté R, Fraile A, de la Peña OʼShea VA, Alemán J. Nat. Commun. 2019; 10: 2634
  • 131 Liu D, Jiao M.-J, Feng Z.-T, Wang X.-Z, Xu G.-Q, Xu P.-F. Org. Lett. 2018; 20: 5700
  • 132 Speck F, Rombach D, Wagenknecht H.-A. Beilstein J. Org. Chem. 2019; 15: 52
  • 133 Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
  • 134 Sherwood TC, Li N, Yazdani AN, Murali Dhar TG. J. Org. Chem. 2018; 83: 3000
  • 135 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
  • 136 Gualandi A, Rodeghiero G, Della Rocca E, Bertoni F, Marchini M, Perciaccante R, Jansen TP, Ceroni P, Cozzi PG. Chem. Commun. (Cambridge) 2018; 54: 10044
  • 137 Matsubara R, Yabuta T, Idros UM, Hayashi M, Ema F, Kobori Y, Sakata K. J. Org. Chem. 2018; 83: 9381
  • 138 MacKenzie IA, Wang L, Onuska NPR, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature (London) 2020; 580: 76
  • 139 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science (Washington, D. C.) 2015; 349: 1326
  • 140 McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
  • 141 Holmberg-Douglas N, Onuska NPR, Nicewicz DA. Angew. Chem. Int. Ed. 2020; 59: 7425
  • 142 Chen W, Huang Z, Tay NES, Giglio B, Wang M, Wang H, Wu Z, Nicewicz DA, Li Z. Science (Washington, D. C.) 2019; 364: 1170
  • 143 Tay NES, Chen W, Levens A, Pistritto VA, Huang Z, Wu Z, Li Z, Nicewicz DA. Nat. Catal. 2020; 3: 734
  • 144 Venditto NJ, Nicewicz DA. Org. Lett. 2020; 22: 4817
  • 145 Perkowski AJ, Cruz CL, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 15684
  • 146 Lawson CA, Dominey AP, Williams GD, Murphy JA. Chem. Commun. (Cambridge) 2020; 56: 11445
  • 147 Grandjean J.-MM, Nicewicz DA. Angew. Chem. Int. Ed. 2013; 52: 3967
  • 148 Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024