Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00090
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.6 Sulfur-, Selenium-, and Silicon-Centered Radicals

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

Sulfur-, selenium-, and silicon-centered radicals are versatile reaction intermediates in modern synthetic organic chemistry. These radicals are capable of adding to carbon–carbon multiple bonds such as alkene and arenes, thus introducing the corresponding elements into the products. These radicals can also serve as mediators of free-radical reactions, including as polarity-reversal catalysts, asymmetric catalysts, and halogen-atom abstraction agents, without these elements being incorporated into the products of the reactions. This chapter describes the utility of sulfur-, selenium-, and silicon-centered radicals in two sections. The first covers reactions involving incorporation of the corresponding elements into the products, while the second describes reactions using these radicals as catalysts or reagents to prepare products that do not contain the corresponding elements.

 
  • 1 Taniguchi T. Synthesis 2017; 49: 3511
  • 2 Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard J.-P, Lacôte E, Larraufie M.-H, Maestri G, Malacria M, Ollivier C, Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. Wiley; Chichester 2012. 2. 767
  • 3 Glass RS. Top. Curr. Chem. 2018; 376: 1
  • 4 Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 5 Nomoto A, Ogawa A, The Chemistry of Organic Selenium and Tellurium Compounds. Rappoport Z. Wiley; Chichester 2012. 3. 623
  • 6 Ogawa A, Main Group Metals in Organic Synthesis. Yamamoto H, Oshima K. Wiley-VCH; Weinheim, Germany 2004. 2. 813
  • 7 Renaud P. Top. Curr. Chem. 2000; 208: 81
  • 8 Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem. Rev. 2018; 118: 6516
  • 9 Chatgilialoglu C, Timokhin VI. Adv. Organomet. Chem. 2008; 57: 117
  • 10 Chatgilialoglu C. Organosilanes in Radical Chemistry. Wiley; Chichester 2004
  • 11 Gorges J, Kazmaier U. Eur. J. Org. Chem. 2015; 8011
  • 12 Ichinose Y, Oshima K, Utimoto K. Chem. Lett. 1988; 17: 1437
  • 13 Ichinose Y, Wakamatsu K, Nozaki K, Birbaum J.-L, Oshima K, Utimoto K. Chem. Lett. 1987; 16: 1647
  • 14 Limnios D, Kokotos CG. Adv. Synth. Catal. 2017; 359: 323
  • 15 Zhao G, Kaur S, Wang T. Org. Lett. 2017; 19: 3291
  • 16 Zalesskiy SS, Shlapakov NS, Ananikov VP. Chem. Sci. 2016; 7: 6740
  • 17 Fadeyi OO, Mousseau JJ, Feng Y, Allais C, Nuhant P, Chen MZ, Pierce B, Robinson R. Org. Lett. 2015; 17: 5756
  • 18 Bhat VT, Duspura PA, Seo S, Bakar NSBA, Greaney MF. Chem. Commun. (Cambridge) 2015; 51: 4383
  • 19 Keylor MH, Park JE, Wallentin C.-J, Stephenson CRJ. Tetrahedron 2014; 70: 4264
  • 20 Tyson EL, Niemeyer ZL, Yoon TP. J. Org. Chem. 2014; 79: 1427
  • 21 Tyson EL, Ament MS, Yoon TP. J. Org. Chem. 2013; 78: 2046
  • 22 DeForrest CA, Anseth KS. Angew. Chem. Int. Ed. 2012; 51: 1816
  • 23 DeForrest CA, Anseth KS. Nat. Chem. 2011; 3: 925
  • 24 Povie G, Tran A.-T, Bonaffé D, Habegger J, Hu Z, Le Narvor C, Renaud P. Angew. Chem. Int. Ed. 2014; 53: 3894
  • 25 Fang J.-M, Chen M.-Y. Tetrahedron Lett. 1987; 28: 2853
  • 26 Mantrand N, Renaud P. Tetrahedron 2008; 64: 11860
  • 27 Pagire SK, Paria S, Reiser O. Org. Lett. 2016; 18: 2106
  • 28 Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
  • 29 Liu C, Ding L, Guo G, Liu W. Eur. J. Org. Chem. 2016; 910
  • 30 Singh AK, Chawla R, Yadav LDS. Tetrahedron Lett. 2014; 55: 4742
  • 31 Chawla R, Singh AK, Yadav LDS. Eur. J. Org. Chem. 2014; 2032
  • 32 Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. (Cambridge) 2013; 49: 10239
  • 33 Yuan Z, Wang H.-Y, Mu X, Chen P, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2015; 137: 2468
  • 34 Ito O. J. Am. Chem. Soc. 1983; 105: 850
  • 35 Liu L.-P, Shi M. Chem. Commun. (Cambridge) 2004; 2878
  • 36 Dang H.-S, Roberts BP. Tetrahedron Lett. 1995; 36: 2875
  • 37 Zhou R, Goh YY, Liu H, Tao H, Li L, Wu J. Angew. Chem. Int. Ed. 2017; 56: 16621
  • 38 Hou J, Ee A, Cao H, Ong H.-W, Xu J.-H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 17220
  • 39 Huang M.-H, Hao W.-J, Li G, Tu S.-J, Jiang B. Chem. Commun. (Cambridge) 2018; 54: 10791
  • 40 Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
  • 41 Wille U. Chem. Rev. 2013; 113: 813
  • 42 Zhu M, Dagousset G, Alami M, Magnier E, Messaoudi S. Org. Lett. 2019; 21: 5132
  • 43 Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336
  • 44 Jouffroy M, Kelly CB, Molander GA. Org. Lett. 2016; 18: 876
  • 45 Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
  • 46 Xu Z, Chai L, Liu Z.-Q. Org. Lett. 2017; 19: 5573
  • 47 Liu S, Pan P, Fan H, Li H, Wang W, Zhang Y. Chem. Sci. 2019; 10: 3817
  • 48 Sakamoto R, Nguyen B.-N, Maruoka K. Asian J. Org. Chem. 2018; 7: 1085
  • 49 Yang C, Wang J, Li J, Ma W, An K, He W, Jiang C. Adv. Synth. Catal. 2018; 360: 3049
  • 50 Leifert D, Studer A. Org. Lett. 2015; 17: 386
  • 51 Xu L, Zhang S, Li P. Org. Chem. Front. 2015; 2: 459
  • 52 Roberts BP. Chem. Soc. Rev. 1999; 28: 25
  • 53 Pan X, Lacôte E, Lalevée J, Curran DP. J. Am. Chem. Soc. 2012; 134: 5669
  • 54 Newcomb M, Varick TK, Ha C, Manek MB, Yue X. J. Am. Chem. Soc. 1992; 114: 8158
  • 55 Franz JA, Bushaw BA, Alnajjar MS. J. Am. Chem. Soc. 1989; 111: 268
  • 56 Crich D, Yao Q. J. Org. Chem. 1995; 60: 84
  • 57 Cai Y, Roberts BP, Tocher DA. J. Chem. Soc., Perkin Trans. 1 2002; 1376
  • 58 Feldman KS, Romanelli AL, Ruckle Jr RE, Jean G. J. Org. Chem. 1992; 57: 100
  • 59 Feldman KS, Romanelli AL, Ruckle Jr RE, Miller RF. J. Am. Chem. Soc. 1988; 110: 3300
  • 60 Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett. 1988; 29: 5135
  • 61 Hashimoto T, Kawamata Y, Maruoka K. Nat. Chem. 2014; 6: 702
  • 62 Barton DHR, Crich D, Motherwell WB. J. Chem. Soc., Chem. Commun. 1983; 939
  • 63 Barton DHR, Crich D, Motherwell WB. Tetrahedron 1985; 41: 3901
  • 64 Walsh R. Acc. Chem. Res. 1981; 14: 246
  • 65 Gordon AJ, Ford RA. The Chemistʼs Companion: A Handbook of Practical Data, Techniques, and References. Wiley; New York 1972
  • 66 Zhang P, Le CC, MacMillan DWC. J. Am. Chem. Soc. 2016; 138: 8084
  • 67 Le CC, Chen TQ, Liang T, Zhang P, MacMillan DWC. Science (Washington, D. C.) 2018; 360: 1010