Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00177
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.9 Oxygen-Centered Radicals

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

Oxygen-centered radicals (R1O•) are reactive intermediates in organic synthesis, with versatile synthetic utilities in processes such as hydrogen-atom transfer (HAT), β-fragmentation, radical addition to unsaturated carbon–carbon bonds, and rearrangement reactions. In this review, we focus on recent advances in the generation and transformation of oxygen-centered radicals, including (alkyl-, α-oxo-, aryl-) carboxyl, alkoxyl, aminoxyl, phenoxyl, and vinyloxyl radicals, and compare the reactivity of oxygen-centered radicals under traditional reaction conditions with their reactivity under visible-light-induced reaction conditions.

 
  • 1 Hartung J, Gottwald T, Špehar K. Synthesis 2002; 1469
  • 2 Čeković Ž. J. Serb. Chem. Soc. 2005; 70: 287
  • 3 Chiba S, Chen H. Org. Biomol. Chem. 2014; 12: 4051
  • 4 Guo SR, Kumar PS, Yang MH. Adv. Synth. Catal. 2017; 359: 2
  • 5 Hartung J. Eur. J. Org. Chem. 2001; 619
  • 6 Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 7 Motherwell WB, Crich D. Free Radical Chain Reactions in Organic Synthesis. Academic; London 1992
  • 8 Oxygen Radicals in Chemistry and Biology. Bors W, Saran M, Tait D. de Gruyter; Berlin 1984
  • 9 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 10 Togo H, Katohgi M. Synlett 2001; 565
  • 11 Narayanam JMR, Stephenson CRJ. Chem. Soc. Rev. 2011; 40: 102
  • 12 Prier CK, Rankic DA, MacMillan DWC. Chem. Rev. 2013; 113: 5322
  • 13 Reckenthaler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
  • 14 Staveness D, Bosque I, Stephenson CRJ. Acc. Chem. Res. 2016; 49: 2295
  • 15 Xuan J, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 6828
  • 16 Xuan J, Zhang ZG, Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 15632
  • 17 Guo J.-J, Hu AH, Zuo ZW. Tetrahedron Lett. 2018; 59: 2103
  • 18 Roslin S, Odell LR. Eur. J. Org. Chem. 2017; 1993
  • 19 Jia KF, Chen YY. Chem. Commun. (Cambridge) 2018; 54: 6105
  • 20 Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2016; 14: 7380
  • 21 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 22 Rowlands GJ. Tetrahedron 2010; 66: 1593
  • 23 Čeković Ž. Tetrahedron 2003; 59: 8073
  • 24 Francisco CG, Herrera AJ, Suárez E. J. Org. Chem. 2002; 67: 7439
  • 25 Serguchev YA, Beletskaya IP. Russ. Chem. Rev. (Engl. Transl.) 1980; 49: 1119
  • 26 Hunsdiecker H, Hunsdiecker C, Vogt E. US 2 176 181, 1939
  • 27 Hunsdiecker H, Hunsdiecker C, Vogt E. Chem. Abstr. 1940; 34: 1685
  • 28 Hunsdiecker C, Hunsdiecker H. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
  • 29 Barton DHR, Crich D, Motherwell WB. J. Chem. Soc., Chem. Commun. 1983; 939
  • 30 Barton DHR, Crich D, Motherwell WB. Tetrahedron Lett. 1983; 24: 4979
  • 31 Barton DHR, Serebryakov EP. Proc. Chem. Soc., London 1962; 309
  • 32 Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
  • 33 Schnermann MJ, Overman LE. Angew. Chem. Int. Ed. 2012; 51: 9576
  • 34 Xie J, Xu P, Li HM, Xue QC, Jin HM, Cheng YX, Zhu CJ. Chem. Commun. (Cambridge) 2013; 49: 5672
  • 35 Yang J, Zhang J, Qi L, Hu CC, Chen YY. Chem. Commun. (Cambridge) 2015; 51: 5275
  • 36 Hu CC, Chen YY. Org. Chem. Front. 2015; 2: 1352
  • 37 Li JJ, Tian H, Jiang M, Yang HJ, Zhao YF, Fu H. Chem. Commun. (Cambridge) 2016; 52: 8862
  • 38 Zuo ZW, Ahneman DT, Chu LL, Terrett JA, Doyle AG, MacMillan DWC. Science (Washington, D. C.) 2014; 345: 437
  • 39 Noble A, McCarver SJ, MacMillan DWC. J. Am. Chem. Soc. 2015; 137: 624
  • 40 Johnston CP, Smith RT, Allmendinger S, MacMillan DWC. Nature (London) 2016; 536: 322
  • 41 Zhou QQ, Guo W, Ding W, Wu X, Chen X, Lu LQ, Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 11196
  • 42 Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 43 Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
  • 44 Ventre S, Petronijevic FR, MacMillan DWC. J. Am. Chem. Soc. 2015; 137: 5654
  • 45 Candish L, Standley EA, Gómez-Suárez A, Mukherjee S, Glorius F. Chem.–Eur. J. 2016; 22: 9971
  • 46 Xiang JB, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del Bel M, Gallego GM, Spangler JE, Starr J, Yang SL, Blackmond DG, Baran PS. Nature (London) 2019; 573: 398
  • 47 Liu J, Liu Q, Yi H, Qin C, Bai RP, Qi XT, Lan Y, Lei AW. Angew. Chem. Int. Ed. 2014; 53: 502
  • 48 Chu LL, Lipshultz JM, MacMillan DWC. Angew. Chem. Int. Ed. 2015; 54: 7929
  • 49 Cheng WM, Shang R, Yu HZ, Fu Y. Chem.–Eur. J. 2015; 21: 13191
  • 50 Fang P, Li MZ, Ge HB. J. Am. Chem. Soc. 2010; 132: 11898
  • 51 Zhou C, Li PH, Zhu XJ, Wang L. Org. Lett. 2015; 17: 6198
  • 52 Huang HC, Zhang GJ, Chen YY. Angew. Chem. Int. Ed. 2015; 54: 7872
  • 53 Tan H, Li HJ, Ji WQ, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
  • 54 Li JZ, Liu ZY, Wu S, Chen YY. Org. Lett. 2019; 21: 2077
  • 55 Zhang HH, Yu SY. Org. Lett. 2019; 21: 3711
  • 56 Ramirez NP, Bosque I, Gonzalez-Gomez JC. Org. Lett. 2015; 17: 4550
  • 57 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200
  • 58 Chateauneuf J, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1988; 110: 2886
  • 59 Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci. 2017; 8: 3618
  • 60 Wang SF, Cao XP, Li Y. Angew. Chem. Int. Ed. 2017; 56: 13809
  • 61 Li Y, Zhang J, Li DF, Chen YY. Org. Lett. 2018; 20: 3296
  • 62 Barton DHR, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
  • 63 Vite GD, Fraserreid B. Synth. Commun. 1988; 18: 1339
  • 64 Walling C, Clark RT. J. Am. Chem. Soc. 1974; 96: 4530
  • 65 Beckwith ALJ, Hay BP, Williams GM. J. Chem. Soc., Chem. Commun. 1989; 1202
  • 66 Beckwith ALJ, Hay BP. J. Am. Chem. Soc. 1988; 110: 4415
  • 67 Kim S, Lee TA, Song Y. Synlett 1998; 471
  • 68 Zhang J, Li Y, Zhang FY, Hu CC, Chen YY. Angew. Chem. Int. Ed. 2016; 55: 1872
  • 69 Jia KF, Zhang FY, Huang HC, Chen YY. J. Am. Chem. Soc. 2016; 138: 1514
  • 70 Curran DP, Shen W. J. Am. Chem. Soc. 1993; 115: 6051
  • 71 Francisco CG, Freire R, Herrera AJ, Perez-Martin I, Suárez E. Org. Lett. 2002; 4: 1959
  • 72 Francisco CG, Freire R, Herrera AJ, Perez-Martin I, Suárez E. Tetrahedron 2007; 63: 8910
  • 73 Leon EI, Martin A, Perez-Martin I, Quintanal LM, Suárez E. Eur. J. Org. Chem. 2012; 3818
  • 74 Martin A, Perez-Martin I, Quintanal LM, Suárez E. Tetrahedron Lett. 2008; 49: 5179
  • 75 Petrović G, Čeković Ž. Tetrahedron Lett. 1997; 38: 627
  • 76 Deng YF, Nguyen MD, Zou YK, Houk KN, Smith III AB. Org. Lett. 2019; 21: 1708
  • 77 Wang CY, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
  • 78 Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
  • 79 Wu XX, Wang MY, Huan LT, Wang DP, Wang JW, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640
  • 80 Wu XX, Zhang H, Tang NN, Wu Z, Wang DP, Ji MS, Xu Y, Wang M, Zhu C. Nat. Commun. 2018; 9: 3343
  • 81 Wang M, Huan LT, Zhu C. Org. Lett. 2019; 21: 821
  • 82 Hu AH, Guo J.-J, Pan H, Tang HM, Gao ZB, Zuo ZW. J. Am. Chem. Soc. 2018; 140: 1612
  • 83 Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik M.-H, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
  • 84 Li GX, Hu XF, He G, Chen G. Chem. Sci. 2019; 10: 688
  • 85 Bao X, Wang Q, Zhu JP. Angew. Chem. Int. Ed. 2019; 58: 2139
  • 86 Bao X, Wang Q, Zhu JP. Chem.–Eur. J. 2019; 25: 11630
  • 87 Buszek RJ, Sinha A, Francisco JS. J. Am. Chem. Soc. 2011; 133: 2013
  • 88 Elford PE, Roberts BP. J. Chem. Soc., Perkin Trans. 2 1996; 2247
  • 89 Fernández-Ramos A, Zgierski MZ. J. Phys. Chem. A 2002; 106: 10578
  • 90 Konya KG, Paul T, Lin SQ, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 2000; 122: 7518
  • 91 Gilbert BC, Holmes RGG, Laue HAH, Norman ROC. J. Chem. Soc., Perkin Trans. 2 1976; 1047
  • 92 Che C, Qian ZS, Wu MC, Zhao Y, Zhu GG. J. Org. Chem. 2018; 83: 5665
  • 93 Zhang J, Liu D, Liu S, Ge YY, Lan Y, Chen YY. iScience 2020; 23: 100755
  • 94 Hu XF, Li GX, He G, Chen G. Org. Chem. Front. 2019; 6: 3205
  • 95 Yayla HG, Wang HJ, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
  • 96 Guo J.-J, Hu AH, Chen YL, Sun JF, Tang HM, Zuo ZW. Angew. Chem. Int. Ed. 2016; 55: 15319
  • 97 Zhang KN, Chang L, An Q, Wang X, Zuo Z. J. Am. Chem. Soc. 2019; 141: 10556
  • 98 Zhang J, Li Y, Xu RY, Chen YY. Angew. Chem. Int. Ed. 2017; 56: 12619
  • 99 Ito Y, Kimura A, Osawa T, Hari Y. J. Org. Chem. 2018; 83: 10701
  • 100 Shi JL, Wang ZX, Zhang R, Wang YK, Wang JB. Chem.–Eur. J. 2019; 25: 8992
  • 101 Bentrude WG, Darnall KR. J. Am. Chem. Soc. 1968; 90: 3588
  • 102 Sawaki Y, Ogata Y. J. Am. Chem. Soc. 1976; 98: 7324
  • 103 Kim S, Cho CH, Lim CJ. J. Am. Chem. Soc. 2003; 125: 9574
  • 104 Jia KF, Pan Y, Chen YY. Angew. Chem. Int. Ed. 2017; 56: 2478
  • 105 Jia KF, Li JZ, Chen YY. Chem.–Eur. J. 2018; 24: 3174
  • 106 Barthelemy AL, Tuccio B, Magnier E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
  • 107 Kim Y, Lee K, Mathi GR, Kim I, Hong S. Green Chem. 2019; 21: 2082
  • 108 Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
  • 109 Thomas JR. J. Am. Chem. Soc. 1964; 86: 1446
  • 110 Han B, Yang XL, Fang R, Yu W, Wang C, Duan XY, Liu S. Angew. Chem. Int. Ed. 2012; 51: 8816
  • 111 Pratt DA, Blake JA, Mulder P, Walton JC, Korth HG, Ingold KU. J. Am. Chem. Soc. 2004; 126: 10667
  • 112 Berti C, Grierson L, Grimes JAM, Perkins MJ, Terem B. Angew. Chem. Int. Ed. Engl. 1990; 29: 653
  • 113 Schmidt VA, Alexanian EJ. Angew. Chem. Int. Ed. 2010; 49: 4491
  • 114 Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 11402
  • 115 Hu X.-Q, Chen J, Chen J.-R, Yan D.-M, Xiao W.-J. Chem.–Eur. J. 2016; 22: 14141
  • 116 Yang S, Wang L, Wang L, Li H. J. Org. Chem. 2020; 85: 564
  • 117 Jeschke P, Baston E, Leroux FR. Mini-Rev. Med. Chem. 2007; 1027
  • 118 Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
  • 119 Peláez WJ, Argüello GA. Tetrahedron Lett. 2010; 51: 5242
  • 120 Venturini F, Navarrini W, Famulari A, Sansotera M, Dardani P, Tortelli V. J. Fluorine Chem. 2012; 140: 43
  • 121 Lee JW, Lee KN, Ngai M.-Y. Angew. Chem. Int. Ed. 2019; 58: 11171
  • 122 Zheng W, Morales-Rivera CA, Lee JW, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2018; 57: 9645
  • 123 Zheng W, Lee JW, Morales-Rivera CA, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2018; 57: 13795
  • 124 Jelier BJ, Tripet PF, Pietrasiak E, Franzoni I, Jeschke G, Togni A. Angew. Chem. Int. Ed. 2018; 57: 13784
  • 125 Lee JW, Zheng W, Morales-Rivera CA, Liu P, Ngai M.-Y. Chem. Sci. 2019; 10: 3217
  • 126 Burton GW, Ingold KU. Acc. Chem. Res. 1986; 19: 194
  • 127 Aliaga C, Aspee A, Scaiano JC. Org. Lett. 2003; 5: 4145
  • 128 Burton GW, Doba T, Gabe E, Hughes L, Lee FL, Prasad L, Ingold KU. J. Am. Chem. Soc. 1985; 107: 7053
  • 129 Das PK, Encinas MV, Steenken S, Scaiano JC. J. Am. Chem. Soc. 1981; 103: 4162
  • 130 Ingold KU, Landolt Börnstein: Group II Molecules and Radicals: Radical Reaction Rates in Liquids. Fisher H. Springer; Berlin 1984. 13C.
  • 131 Franchi P, Lucarini M, Pedulli GF, Valgimigli L, Lunelli B. J. Am. Chem. Soc. 1999; 121: 507
  • 132 Chen YX, Qian LF, Zhang W, Han B. Angew. Chem. Int. Ed. 2008; 47: 9330
  • 133 Libman A, Shalit H, Vainer Y, Narute S, Kozuch S, Pappo D. J. Am. Chem. Soc. 2015; 137: 11453
  • 134 Goswami M, Konkel A, Rahimi M, Louillat-Habermeyer ML, Kelm H, Jin R, de Bruin B, Patureau FW. Chem.–Eur. J. 2018; 24: 11936
  • 135 Bering L, DʼOttavio L, Sirvinskaite G, Antonchick AP. Chem. Commun. (Cambridge) 2018; 54: 13022
  • 136 Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2009; 49: 971
  • 137 Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
  • 138 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem.–Eur. J. 2015; 21: 12321
  • 139 Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
  • 140 Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 13325
  • 141 Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Angew. Chem. Int. Ed. 2019; 58: 8400
  • 142 Zhao Y, Huang B, Yang C, Xia W. Org. Lett. 2016; 18: 3326
  • 143 Zhao Y, Huang B, Yang C, Li B, Gou B, Xia W. ACS Catal. 2017; 7: 2446
  • 144 Zhang Y, Liu H, Tang L, Tang HJ, Wang L, Zhu C, Feng C. J. Am. Chem. Soc. 2018; 140: 10695
  • 145 Mathi GR, Jeong Y, Moon Y, Hong S. Angew. Chem. Int. Ed. 2020; 59: 2049