Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00262
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.12 Intermolecular Radical C—H Functionalization

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

The generation of carbon-centered radicals via intermolecular hydrogen-atom transfer (HAT) from C—H bonds to an abstracting species (HAT reagent) represents a significant challenge in terms of reactivity, site-selectivity and stereoselectivity. The radical species resulting from such a transfer can then engage in carbon—carbon or carbon—heteroatom bond formation, possibly through the intervention of transition-metal catalysts, leading to a variety of functionalized products. This chapter aims to provide the reader with useful guidelines to understand, predict, and design selective radical transformations based upon initial HAT from a C—H bond coupled to different radical-capture strategies. A selection of examples that illustrate different approaches to implement HAT reactions in synthetically useful procedures are presented.

 
  • 1 Chu JCK, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
  • 2 Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
  • 3 Dénès F. Chimia 2020; 74: 23
  • 4 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
  • 5 Song S.-Z, Meng Y.-N, Li Q, Wei W.-T. Adv. Synth. Catal. 2020; 362: 2120
  • 6 Huang X, Groves JT. ACS Catal. 2016; 6: 751
  • 7 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
  • 8 Moir M, Danon JJ, Reekie TA, Kassiou M. Expert Opin. Drug Discovery 2019; 14: 1137
  • 9 Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
  • 10 Oisaki K. Chem. Pharm. Bull. 2018; 66: 907
  • 11 Huang X, Groves JT. Chem. Rev. 2018; 118: 2491
  • 12 White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
  • 13 Wedde S, Biermann M, Choi JE, Oike K, Zumbrägel N, Gröger H, Green Oxidation in Organic Synthesis. Jiao N, Stahl SS. Wiley; Hoboken, NJ 2019: 439
  • 14 Nakano Y, Biegasiewicz KF, Hyster TK. Curr. Opin. Chem. Biol. 2019; 49: 16
  • 15 Zou L, Paton RS, Eschenmoser A, Newhouse TR, Baran PS, Houk KN. J. Org. Chem. 2013; 78: 4037
  • 16 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 17 Yang Z, Yu P, Houk KN. J. Am. Chem. Soc. 2016; 138: 4237
  • 18 Chen K, Eschenmoser A, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 9705
  • 19 Milan M, Bietti M, Costas M. Chem. Commun. (Cambridge) 2018; 54: 9559
  • 20 Milan M, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 196
  • 21 Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Chem. Soc. Rev. 2020; 49: 8137
  • 22 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science (Washington, D. C.) 2016; 353: 1014
  • 23 Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
  • 24 Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Nature (London) 2019; 574: 516
  • 25 Zhang Z, Zhang X, Nagib DA. Chem 2019; 5: 3127
  • 26 Fu L, Zhang Z, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2020; 142: 12493
  • 27 Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
  • 28 Costas M, Bietti M. Acc. Chem. Res. 2018; 51: 2601
  • 29 Bietti M. Angew. Chem. Int. Ed. 2018; 57: 16618
  • 30 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC; Boca Raton, FL 2007
  • 31 Walling C. Free Radicals in Solution. Wiley; New York 1957
  • 32 Roberts BP. Chem. Soc. Rev. 1999; 28: 25
  • 33 Paul V, Roberts BP. J. Chem. Soc., Chem. Commun. 1987; 1322
  • 34 Griller D, Howard JA, Marriott PR, Scaiano JC. J. Am. Chem. Soc. 1981; 103: 619
  • 35 Pischel U, Nau WM. J. Am. Chem. Soc. 2001; 123: 9727
  • 36 Finn M, Friedline R, Suleman NK, Wohl CJ, Tanko JM. J. Am. Chem. Soc. 2004; 126: 7578
  • 37 Salamone M, Milan M, DiLabio GA, Bietti M. J. Org. Chem. 2014; 79: 7179
  • 38 DʼAccolti L, Dinoi A, Fusco C, Russo A, Curci R. J. Org. Chem. 2003; 68: 7806
  • 39 Chen MS, White MC. Science (Washington, D. C.) 2010; 327: 566
  • 40 Salamone M, Bietti M. Synlett 2014; 25: 1803
  • 41 Weber M, Fischer H. J. Am. Chem. Soc. 1999; 121: 7381
  • 42 Chenier JHB, Tong SB, Howard JA. Can. J. Chem. 1978; 56: 3047
  • 43 Giering L, Berger M, Steel C. J. Am. Chem. Soc. 1974; 96: 953
  • 44 Dondi D, Fagnoni M, Albini A. Chem.–Eur. J. 2006; 12: 4153
  • 45 DiLabio GA, Franchi P, Lanzalunga O, Lapi A, Lucarini F, Lucarini M, Mazzonna M, Prasad VK, Ticconi B. J. Org. Chem. 2017; 82: 6133
  • 46 Chen K, Baran PS. Nature (London) 2009; 459: 824
  • 47 González-Núñez ME, Castellano G, Andreu C, Royo J, Báguena M, Mello R, Asensio G. J. Am. Chem. Soc. 2001; 123: 7487
  • 48 Dondi D, Ravelli D, Fagnoni M, Mella M, Molinari A, Maldotti A, Albini A. Chem.–Eur. J. 2009; 15: 7949
  • 49 Moteki SA, Usui A, Zhang T, Solorio Alvarado CR, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 8657
  • 50 Moteki SA, Selvakumar S, Zhang T, Usui A, Maruoka K. Asian J. Org. Chem. 2014; 3: 932
  • 51 Shen D, Miao C, Wang S, Xia C, Sun W. Org. Lett. 2014; 16: 1108
  • 52 Salamone M, Ortega VB, Bietti M. J. Org. Chem. 2015; 80: 4710
  • 53 Kamijo S, Free-Radical Synthesis and Functionalization of Heterocycles. Landais Y. Springer; Cham, Switzerland 2018: 71
  • 54 Fraser-Reid B, Holder NL, Yunker MB. J. Chem. Soc., Chem. Commun. 1972; 1286
  • 55 Fraser-Reid B, Holder NL, Hicks DR, Walker DL. Can. J. Chem. 1977; 55: 3978
  • 56 Fraser-Reid B, Anderson RC, Hicks DR, Walker DL. Can. J. Chem. 1977; 55: 3986
  • 57 Geraghty NWA, Hernon EM. Tetrahedron Lett. 2009; 50: 570
  • 58 Kiefer H, Traylor TG. Tetrahedron Lett. 1966; 6163
  • 59 Mendenhall GD. Tetrahedron Lett. 1983; 24: 451
  • 60 Vankateswara-Rao B, Chan JB, Moskowitz N, Fraser-Reid B. Bull. Soc. Chim. Fr. 1993; 130: 428
  • 61 Liu Z.-Q, Sun L, Wang J.-G, Han J, Zhao Y.-K, Zhou B. Org. Lett. 2009; 11: 1437
  • 62 Li J, Zhang J, Tan H, Wang DZ. Org. Lett. 2015; 17: 2522
  • 63 Ravelli D, Albini A, Fagnoni M. Chem.–Eur. J. 2011; 17: 572
  • 64 Texier I, Delaire JA, Giannotti C. Phys. Chem. Chem. Phys. 2000; 2: 1205
  • 65 Duncan DC, Fox MA. J. Phys. Chem. A 1998; 102: 4559
  • 66 Tanielian C, Cougnon F, Seghrouchni R. J. Mol. Catal. A: Chem. 2007; 262: 164
  • 67 Morton CM, Zhu Q, Ripberger H, Troian-Gautier L, Toa ZSD, Knowles RR, Alexanian EJ. J. Am. Chem. Soc. 2019; 141: 13253
  • 68 Fenton HJH. J. Chem. Soc., Trans. 1894; 65: 899
  • 69 Walling C, El-Taliawi GM. J. Am. Chem. Soc. 1973; 95: 844
  • 70 Prokhorevich KN, Kulinkovich OG. Tetrahedron: Asymmetry 2006; 17: 2976
  • 71 Snowden RL, Brauchli R, Linder S. Helv. Chim. Acta 2011; 94: 1216
  • 72 Marty M. EP 1 529 770, 2005
  • 73 Moretti R, Birkbeck AA. WO 2017 046 071, 2017
  • 74 Moretti R, Birkbeck AA, Chapuis C. WO 2019 185 599, 2019
  • 75 Jeffrey JL, Terrett JA, MacMillan DWC. Science (Washington, D. C.) 2015; 349: 1532
  • 76 Kamijo S, Hoshikawa T, Inoue M. Org. Lett. 2011; 13: 5928
  • 77 Hoshikawa T, Kamijo S, Inoue M. Org. Biomol. Chem. 2013; 11: 164
  • 78 Amaoka Y, Nagatomo M, Watanabe M, Tao K, Kamijo S, Inoue M. Chem. Sci. 2014; 5: 4339
  • 79 Zhang R.-Y, Xi L.-Y, Zhang L, Liang S, Chen S.-Y, Yu X.-Q. RSC Adv. 2014; 4: 54349
  • 80 Gong J, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4486
  • 81 Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
  • 82 Carra C, Scaiano JC. Eur. J. Org. Chem. 2008; 4454
  • 83 Davies AG, Griller D, Roberts BP, Tudor R. J. Chem. Soc. D 1970; 640
  • 84 Curran DP, McFadden TR. J. Am. Chem. Soc. 2016; 138: 7741
  • 85 Clark AJ, Rooke S, Sparey TJ, Taylor PC. Tetrahedron Lett. 1996; 37: 909
  • 86 Yoshimitsu T, Tsunoda M, Nagaoka H. Chem. Commun. (Cambridge) 1999; 1745
  • 87 Yoshimitsu T, Arano Y, Nagaoka H. J. Org. Chem. 2003; 68: 625
  • 88 Minisci F, Giordano C, Vismara E, Levi S, Tortelli V. J. Am. Chem. Soc. 1984; 106: 7146
  • 89 Leonov D, Elad D. J. Org. Chem. 1974; 39: 1470
  • 90 Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
  • 91 Duncton MAJ. MedChemComm 2011; 2: 1135
  • 92 Proctor RSJ, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 93 Correia CA, Yang L, Li C.-J. Org. Lett. 2011; 13: 4581
  • 94 Salman M, Huang X.-F, Huang Z.-Z. Synlett 2015; 26: 1391
  • 95 Jin J, MacMillan DWC. Angew. Chem. Int. Ed. 2015; 54: 1565
  • 96 Jin J, MacMillan DWC. Nature (London) 2015; 525: 87
  • 97 Dang H.-S, Roberts BP. Chem. Commun. (Cambridge) 1996; 2201
  • 98 Dang H.-S, Roberts BP. J. Chem. Soc., Perkin Trans. 1 1998; 67
  • 99 Bertrand MP, Escoubet S, Gastaldi S, Timokhin VI. Chem. Commun. (Cambridge) 2002; 216
  • 100 Escoubet S, Gastaldi S, Vanthuyne N, Gil G, Siri D, Bertrand MP. Eur. J. Org. Chem. 2006; 3242
  • 101 Poulhès F, Vanthuyne N, Bertrand MP, Gastaldi S, Gil G. J. Org. Chem. 2011; 76: 7281
  • 102 Qvortrup K, Rankic DA, MacMillan DWC. J. Am. Chem. Soc. 2014; 136: 626
  • 103 McNally A, Prier CK, MacMillan DWC. Science (Washington, D. C.) 2011; 334: 1114
  • 104 Prier CK, MacMillan DWC. Chem. Sci. 2014; 5: 4173
  • 105 Liu D, Liu C, Li H, Lei A. Chem. Commun. (Cambridge) 2014; 50: 3623
  • 106 Cao H, Liu D, Liu C, Hu X, Lei A. Org. Biomol. Chem. 2015; 13: 2264
  • 107 Guo S.-r, Yuan Y.-q, Xiang J.-n. Org. Lett. 2013; 15: 4654
  • 108 Zhu X, Xie X, Li P, Guo J, Wang L. Org. Lett. 2016; 18: 1546
  • 109 Tang R.-Y, Xie Y.-X, Xie Y.-L, Xiang J.-N, Li J.-H. Chem. Commun. (Cambridge) 2011; 47: 12867
  • 110 Zhou L, Tang S, Qi X, Lin C, Liu K, Liu C, Lan Y, Lei A. Org. Lett. 2014; 16: 3404
  • 111 Liu S, Qi X, Bai R, Lan Y. J. Org. Chem. 2019; 84: 3321
  • 112 Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem.–Eur. J. 2014; 20: 3874
  • 113 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
  • 114 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 115 Gui Y.-Y, Sun L, Lu Z.-P, Yu D.-G. Org. Chem. Front. 2016; 3: 522
  • 116 Douglas JJ, Sevrin MJ, Stephenson CRJ. Org. Process Res. Dev. 2016; 20: 1134
  • 117 Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
  • 118 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 119 Ahneman DT, Doyle AG. Chem. Sci. 2016; 7: 7002
  • 120 Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DWC. Angew. Chem. Int. Ed. 2018; 57: 5369
  • 121 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DWC. Science (Washington, D. C.) 2016; 352: 1304
  • 122 Le C, Liang Y, Evans RW, Li X, MacMillan DWC. Nature (London) 2017; 547: 79
  • 123 Zhang X, MacMillan DWC. J. Am. Chem. Soc. 2017; 139: 11353
  • 124 Kharasch MS, Urry WH, Kuderna BM. J. Org. Chem. 1949; 14: 248
  • 125 Chan B, Easton CJ, Radom L. J. Phys. Chem. A 2015; 119: 3843
  • 126 Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 127 Enquist Jr JA, Stoltz BM. Nature (London) 2008; 453: 1228
  • 128 Ryu I, Tani A, Fukuyama T, Ravelli D, Fagnoni M, Albini A. Angew. Chem. Int. Ed. 2011; 50: 1869
  • 129 Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582
  • 130 Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
  • 131 Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
  • 132 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 133 Wang J, Liu C, Yuan J, Lei A. Angew. Chem. Int. Ed. 2013; 52: 2256
  • 134 Curran DP, Liu H. J. Am. Chem. Soc. 1992; 114: 5863
  • 135 Leifert D, Daniliuc CG, Studer A. Org. Lett. 2013; 15: 6286
  • 136 Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
  • 137 Allu S, Swamy KCK. RSC Adv. 2015; 5: 92045
  • 138 Wang Z, Tian Q, Yu X, Kuang C. Adv. Synth. Catal. 2014; 356: 961
  • 139 Brewster JF. J. Am. Chem. Soc. 1918; 40: 406
  • 140 Wiberg KB, Slaugh LH. J. Am. Chem. Soc. 1958; 80: 3033
  • 141 Sixma FLJ, Riem RH. Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci. 1958; 61: 183
  • 142 McGrath BP, Tedder JM. Proc. Chem. Soc., London 1961; 80
  • 143 Adam J, Gosselain PA, Goldfinger P. Nature (London) 1953; 171: 704
  • 144 Wohl A. Ber. Dtsch. Chem. Ges. B 1919; 52: 51
  • 145 Djerassi C. Chem. Rev. 1948; 43: 271
  • 146 Ziegler K, Schenck G, Krockow EW, Siebert A, Wenz A, Weber H. Justus Liebigs Ann. Chem. 1942; 551: 1
  • 147 Incremona JH, Martin JC. J. Am. Chem. Soc. 1970; 92: 627
  • 148 Cantillo D, de Frutos O, Rincon JA, Mateos C, Kappe CO. J. Org. Chem. 2014; 79: 223
  • 149 Suarez D, Laval G, Tu S.-M, Jiang D, Robinson CL, Scott R, Golding BT. Synthesis 2009; 1807
  • 150 Togo H, Hirai T. Synlett 2003; 702
  • 151 Bloomfield GF. J. Chem. Soc. 1944; 114
  • 152 Adam J, Gosselain PA, Goldfinger P. Bull. Soc. Chim. Belg. 1956; 65: 523
  • 153 Walling C, Rieger AL, Tanner DD. J. Am. Chem. Soc. 1963; 85: 3129
  • 154 Russell GA, Desmond KM. J. Am. Chem. Soc. 1963; 85: 3139
  • 155 Pearson RE, Martin JC. J. Am. Chem. Soc. 1963; 85: 3142
  • 156 Walling C, Rieger AL. J. Am. Chem. Soc. 1963; 85: 3134
  • 157 Skell PS, Tuleen DL, Readio PD. J. Am. Chem. Soc. 1963; 85: 2850
  • 158 Luning U, Seshadri S, Skell PS. J. Org. Chem. 1986; 51: 2071
  • 159 Inokuchi T, Asanuma G, Torii S. J. Org. Chem. 1982; 47: 4622
  • 160 Peiffer G. Bull. Soc. Chim. Fr. 1963; 537
  • 161 Wilde NC, Isomura M, Mendoza A, Baran PS. J. Am. Chem. Soc. 2014; 136: 4909
  • 162 Kharasch MS, Sosnovsky G. J. Am. Chem. Soc. 1958; 80: 756
  • 163 Rawlinson DJ, Sosnovsky G. Synthesis 1972; 1
  • 164 Kharasch MS, Sosnovsky G, Yang NC. J. Am. Chem. Soc. 1959; 81: 5819
  • 165 Kochi JK. Tetrahedron 1962; 18: 483
  • 166 Andrus MB, Lashley JC. Tetrahedron 2002; 58: 845
  • 167 Kochi JK, Subramanian RV. J. Am. Chem. Soc. 1965; 87: 4855
  • 168 Beckwith ALJ, Zavitsas AA. J. Am. Chem. Soc. 1986; 108: 8230
  • 169 Andrus MB, Zhou Z. J. Am. Chem. Soc. 2002; 124: 8806
  • 170 Kropf H, Schröder R, Fölsing R. Synthesis 1977; 894
  • 171 Clark JS, Tolhurst KF, Taylor M, Swallow S. Tetrahedron Lett. 1998; 39: 4913
  • 172 Alvarez LX, Christ ML, Sorokin AB. Appl. Catal., A 2007; 325: 303
  • 173 Kochi JK, Mains HE. J. Org. Chem. 1965; 30: 1862
  • 174 Wang C.-Y, Song R.-J, Wei W.-T, Fan J.-H, Li J.-H. Chem. Commun. (Cambridge) 2015; 51: 2361
  • 175 Kita Y, Tohma H, Takada T, Mitoh S, Fujita S, Gyoten M. Synlett 1994; 427
  • 176 Viuf C, Bols M. Angew. Chem. Int. Ed. 2001; 40: 623
  • 177 Wang Y, Hu X, Morales-Rivera CA, Li G.-X, Huang X, He G, Liu P, Chen G. J. Am. Chem. Soc. 2018; 140: 9678
  • 178 Pedersen CM, Marinescu LG, Bols M. Org. Biomol. Chem. 2005; 3: 816
  • 179 Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
  • 180 Zhao B, Du H, Shi Y. J. Am. Chem. Soc. 2008; 130: 7220
  • 181 Amaoka Y, Kamijo S, Hoshikawa T, Inoue M. J. Org. Chem. 2012; 77: 9959
  • 182 Ueda M, Kondoh E, Ito Y, Shono H, Kakiuchi M, Ichii Y, Kimura T, Miyoshi T, Naito T, Miyata O. Org. Biomol. Chem. 2011; 9: 2062
  • 183 Dang H.-S, Roberts BP. Tetrahedron Lett. 1999; 40: 4271
  • 184 Dang H.-S, Roberts BP. Tetrahedron Lett. 1999; 40: 8929
  • 185 Dang H.-S, Franchi P, Roberts BP. Chem. Commun. (Cambridge) 2000; 499
  • 186 Dang H.-S, Roberts BP. Tetrahedron Lett. 2000; 41: 8595
  • 187 Fielding AJ, Roberts BP. Tetrahedron Lett. 2001; 42: 4061
  • 188 Dang H.-S, Roberts BP, Tocher DA. J. Chem. Soc., Perkin Trans. 1 2001; 2452
  • 189 Roberts BP, Smits TM. Tetrahedron Lett. 2001; 42: 137
  • 190 Roberts BP, Smits TM. Tetrahedron Lett. 2001; 42: 3663
  • 191 Dang H.-S, Roberts BP. J. Chem. Soc., Perkin Trans. 1 2002; 1161
  • 192 Cai Y, Dang H.-S, Roberts BP. J. Chem. Soc., Perkin Trans. 1 2002; 2449
  • 193 Dang H.-S, Roberts BP, Sekhon J, Smits TM. Org. Biomol. Chem. 2003; 1: 1330
  • 194 Cuthbertson JD, MacMillan DWC. Nature (London) 2015; 519: 74
  • 195 Julia M. Acc. Chem. Res. 1971; 4: 386
  • 196 Julia M, Maumy M. Org. Synth. 1976; 55: 57
  • 197 Bruno JW, Marks TJ, Lewis FD. J. Am. Chem. Soc. 1981; 103: 3608
  • 198 Bruno JW, Marks TJ, Lewis FD. J. Am. Chem. Soc. 1982; 104: 5580
  • 199 Sonawane HR, Bellur NS, Shah VG. J. Chem. Soc., Chem. Commun. 1990; 1603
  • 200 Atkinson R, Aschmann SM, Winer AM, Pitts Jr JN. Int. J. Chem. Kinet. 1982; 14: 507
  • 201 Atkinson R. J. Phys. Chem. Ref. Data 1997; 26: 215
  • 202 Bunescu A, Wang Q, Zhu J. Org. Lett. 2015; 17: 1890
  • 203 Bunescu A, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 3132
  • 204 Bunescu A, Wang Q, Zhu J. Chem.–Eur. J. 2014; 20: 14633
  • 205 Chatalova-Sazepin C, Wang Q, Sammis GM, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 5443
  • 206 Li Y, Liu B, Li H.-B, Wang Q, Li J.-H. Chem. Commun. (Cambridge) 2015; 51: 1024
  • 207 Li Z, Xiao Y, Liu Z.-Q. Chem. Commun. (Cambridge) 2015; 51: 9969
  • 208 Li J, Wang Z, Wu N, Gao G, You J. Chem. Commun. (Cambridge) 2014; 50: 15049
  • 209 Tang S, Zhou D, Li Z.-H, Fu M.-J, Jie L, Sheng R.-L, Li S.-H. Synthesis 2015; 47: 1567
  • 210 Wong Y.-C, Tseng C.-T, Kao T.-T, Yeh Y.-C, Shia K.-S. Org. Lett. 2012; 14: 6024
  • 211 Ingold KU, Lusztyk J, Raner KD. Acc. Chem. Res. 1990; 23: 219
  • 212 Kharasch MS, Brown HC. J. Am. Chem. Soc. 1939; 61: 2142
  • 213 Russell GA. J. Am. Chem. Soc. 1957; 79: 2977
  • 214 Walling C, Mayahi MF. J. Am. Chem. Soc. 1959; 81: 1485
  • 215 Russell GA. J. Am. Chem. Soc. 1958; 80: 4987
  • 216 Matsubara H, Hino Y, Tokizane M, Ryu I. Chem. Eng. J. (Amsterdam, Neth.) 2011; 167: 567
  • 217 Martin JC, Bartlett PD. J. Am. Chem. Soc. 1957; 79: 2533
  • 218 Hioe J, Šakić D, Vrček V, Zipse H. Org. Biomol. Chem. 2015; 13: 157
  • 219 Tlumak RL, Day JC, Slanga JP, Skell PS. J. Am. Chem. Soc. 1982; 104: 7257
  • 220 Zhang Y.-H, Dong M.-H, Jiang X.-K, Chow YL. Can. J. Chem. 1990; 68: 1668
  • 221 Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
  • 222 Quinn RK, Könst ZA, Michalak SE, Schmidt Y, Szklarski AR, Flores AR, Nam S, Horne DA, Vanderwal CD, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
  • 223 Carestia AM, Ravelli D, Alexanian EJ. Chem. Sci. 2018; 9: 5360
  • 224 Tierney MM, Crespi S, Ravelli D, Alexanian EJ. J. Org. Chem. 2019; 84: 12983
  • 225 Margrey KA, Czaplyski WL, Nicewicz DA, Alexanian EJ. J. Am. Chem. Soc. 2018; 140: 4213
  • 226 Xia J.-B, Zhu C, Chen C. Chem. Commun. (Cambridge) 2014; 50: 11701
  • 227 Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew. Chem. Int. Ed. 2012; 51: 10580
  • 228 Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J. Am. Chem. Soc. 2014; 136: 9780
  • 229 Bume DD, Harry SA, Lectka T, Pitts CR. J. Org. Chem. 2018; 83: 8803
  • 230 Takahira Y, Chen M, Kawamata Y, Mykhailiuk P, Nakamura H, Peters BK, Reisberg SH, Li C, Chen L, Hoshikawa T, Shibuguchi T, Baran PS. Synlett 2019; 30: 1178
  • 231 Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard III WA, Groves JT. Science (Washington, D. C.) 2012; 337: 1322
  • 232 Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. J. Am. Chem. Soc. 2014; 136: 6842
  • 233 Rawlings BJ. Nat. Prod. Rep. 2001; 18: 190
  • 234 Groves JT, McClusky GA. J. Am. Chem. Soc. 1976; 98: 859
  • 235 Huang X, Groves JT. J. Biol. Inorg. Chem. 2017; 22: 185
  • 236 Groves JT, Van der Puy M. J. Am. Chem. Soc. 1976; 98: 5290
  • 237 Walling C. Acc. Chem. Res. 1975; 8: 125
  • 238 Haber F, Weiss J, Pope WJ. Proc. R. Soc. London, Ser. A 1934; 147: 332
  • 239 Company A, Lloret J, Gómez L, Costas M, Alkane C—H Activation by Single-Site Metal Catalysis. Pérez PJ. Springer; Dordrecht, The Netherlands 2012: 143
  • 240 Company A, Gómez L, Costas M, Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature. de Visser SP, Kumar D. RSC; Cambridge, UK 2011: 148
  • 241 Ménage S, Vincent JM, Lambeaux C, Fontecave M. J. Chem. Soc., Dalton Trans. 1994; 2081
  • 242 Chen K, Que Jr L. Chem. Commun. (Cambridge) 1999; 1375
  • 243 Chen MS, White MC. Science (Washington, D. C.) 2007; 318: 783
  • 244 Chen K, Que Jr L. J. Am. Chem. Soc. 2001; 123: 6327
  • 245 Company A, Gómez L, Güell M, Ribas X, Luis JM, Que Jr L, Costas M. J. Am. Chem. Soc. 2007; 129: 15766
  • 246 Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
  • 247 Groves JT, Nemo TE. J. Am. Chem. Soc. 1983; 105: 6243
  • 248 Groves JT, Kruper WJ, Haushalter RC. J. Am. Chem. Soc. 1980; 102: 6375
  • 249 Kim C, Chen K, Kim J, Que Jr L. J. Am. Chem. Soc. 1997; 119: 5964
  • 250 Oloo WN, Que Jr L. Acc. Chem. Res. 2015; 48: 2612
  • 251 Das S, Incarvito CD, Crabtree RH, Brudvig GW. Science (Washington, D. C.) 2006; 312: 1941
  • 252 Chen Z, Yin G. Chem. Soc. Rev. 2015; 44: 1083
  • 253 Dantignana V, Milan M, Cussó O, Company A, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 1350
  • 254 Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
  • 255 Chambers RK, Zhao J, Delaney CP, White MC. Adv. Synth. Catal. 2020; 362: 417
  • 256 Zhao J, Nanjo T, de Lucca EC, White MC. Nat. Chem. 2019; 11: 213
  • 257 Vermeulen NA, Chen MS, White MC. Tetrahedron 2009; 65: 3078
  • 258 Okuno T, Ito S, Ohba S, Nishida Y. J. Chem. Soc., Dalton Trans. 1997; 3547
  • 259 Company A, Gómez L, Fontrodona X, Ribas X, Costas M. Chem.–Eur. J. 2008; 14: 5727
  • 260 Gómez L, Garcia-Bosch I, Company A, Benet-Buchholz J, Polo A, Sala X, Ribas X, Costas M. Angew. Chem. Int. Ed. 2009; 48: 5720
  • 261 Prat I, Gómez L, Canta M, Ribas X, Costas M. Chem.–Eur. J. 2013; 19: 1908
  • 262 White MC, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 7194
  • 263 Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
  • 264 Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
  • 265 Cianfanelli M, Olivo G, Milan M, Klein Gebbink RJM, Ribas X, Bietti M, Costas M. J. Am. Chem. Soc. 2020; 142: 1584
  • 266 White MC. Science (Washington, D. C.) 2012; 335: 807
  • 267 Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
  • 268 Lee M, Sanford MS. Org. Lett. 2017; 19: 572
  • 269 Chambers RC, Hill CL. Inorg. Chem. 1989; 28: 2509
  • 270 Hill CL, Prosser-McCartha CM, Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds. Kalyanasundaram K, Grätzel M. Springer; Dordrecht, The Netherlands 1993: 307
  • 271 Petrov LV, Drozdova TI, Lyuta LY, Solyanikov VM. Russ. Chem. Bull. 1990; 39: 226
  • 272 Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
  • 273 Le CC, Wismer MK, Shi Z.-C, Zhang R, Conway DV, Li G, Vachal P, Davies IW, MacMillan DWC. ACS Cent. Sci. 2017; 3: 647
  • 274 Andryushina VA, Voishvillo NE, Druzhinina AV, Stytsenko TS, Yaderets VV, Petrosyan MA, Zeinalov OA. Pharm. Chem. J. (Engl. Transl.) 2013; 47: 103
  • 275 Nolte JC, Urlacher VB. Science of Synthesis: Biocatalysis in Organic Synthesis 2015; 3: 21
  • 276 Zhang K, Shafer BM, Demars II MD, Stern HA, Fasan R. J. Am. Chem. Soc. 2012; 134: 18695
  • 277 Ren X, Yorke JA, Taylor E, Zhang T, Zhou W, Wong LL. Chem.–Eur. J. 2015; 21: 15039
  • 278 Ryu I, Tani A, Fukuyama T, Ravelli D, Montanaro S, Fagnoni M. Org. Lett. 2013; 15: 2554
  • 279 Chikkade PK, Kuninobu Y, Kanai M. Chem. Sci. 2015; 6: 3195
  • 280 Panchaud P, Chabaud L, Landais Y, Ollivier C, Renaud P, Zigmantas S. Chem.–Eur. J. 2004; 10: 3606
  • 281 Zhang X, Yang H, Tang P. Org. Lett. 2015; 17: 5828
  • 282 Kamijo S, Watanabe M, Kamijo K, Tao K, Murafuji T. Synthesis 2016; 48: 115
  • 283 Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
  • 284 Sharma A, Hartwig JF. Nature (London) 2015; 517: 600
  • 285 Karimov RR, Sharma A, Hartwig JF. ACS Cent. Sci. 2016; 2: 715
  • 286 Fontana F, Minisci F, Yan YM, Zhao L. Tetrahedron Lett. 1993; 34: 2517
  • 287 Kojima T, Leising RA, Yan S, Que Jr L. J. Am. Chem. Soc. 1993; 115: 11328
  • 288 Hill CL, Smegal JA, Henly TJ. J. Org. Chem. 1983; 48: 3277
  • 289 Matthews ML, Chang W.-c, Layne AP, Miles LA, Krebs C, Bollinger Jr JM. Nat. Chem. Biol. 2014; 10: 209
  • 290 Reed CF, Horn CL. US 2 046 090A, 1936
  • 291 Canselier JP, Handbook of Detergents, Part F: Production. Zoller U, Sosis P. CRC; Boca Raton, FL 2008: 139
  • 292 Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
  • 293 Kharasch MS, Read AT. J. Am. Chem. Soc. 1939; 61: 3089
  • 294 Quiclet-Sire B, Zard SZ. Chimia 2012; 66: 404
  • 295 Quiclet-Sire B, Zard SZ. Beilstein J. Org. Chem. 2013; 9: 557
  • 296 Zard SZ. Org. Biomol. Chem. 2016; 14: 6891
  • 297 Quiclet-Sire B, Zard SZ. Sci. China: Chem. 2019; 62: 1450
  • 298 Zard SZ. Helv. Chim. Acta 2019; 102: e1 900 134
  • 299 Czaplyski WL, Na CG, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 13854
  • 300 Williamson JB, Czaplyski WL, Alexanian EJ, Leibfarth FA. Angew. Chem. Int. Ed. 2018; 57: 6261
  • 301 Williamson JB, Na CG, Johnson RR, Daniel WFM, Alexanian EJ, Leibfarth FA. J. Am. Chem. Soc. 2019; 141: 12815
  • 302 Du B, Jin B, Sun P. Org. Lett. 2014; 16: 3032
  • 303 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
  • 304 Tzirakis MD, Lykakis IN, Orfanopoulos M. Chem. Soc. Rev. 2009; 38: 2609
  • 305 Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
  • 306 Hill CL. Synlett 1995; 127
  • 307 Renneke RF, Hill CL. J. Am. Chem. Soc. 1986; 108: 3528
  • 308 Renneke RF, Pasquali M, Hill CL. J. Am. Chem. Soc. 1990; 112: 6585
  • 309 Jaynes BS, Hill CL. J. Am. Chem. Soc. 1993; 115: 12212
  • 310 Hill CL. J. Mol. Catal. A: Chem. 2007; 262: 2
  • 311 Combs-Walker LA, Hill CL. J. Am. Chem. Soc. 1992; 114: 938
  • 312 Okada M, Fukuyama T, Yamada K, Ryu I, Ravelli D, Fagnoni M. Chem. Sci. 2014; 5: 2893
  • 313 Yamada K, Okada M, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Org. Lett. 2015; 17: 1292
  • 314 Shi D, He C, Sun W, Ming Z, Meng C, Duan C. Chem. Commun. (Cambridge) 2016; 52: 4714
  • 315 Zhao J, Fang H, Qian P, Han J, Pan Y. Org. Lett. 2014; 16: 5342
  • 316 Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
  • 317 Li G.-X, Hu X, He G, Chen G. ACS Catal. 2018; 8: 11847
  • 318 Jaynes BS, Hill CL. J. Am. Chem. Soc. 1995; 117: 4704
  • 319 Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
  • 320 Tang S, Wang P, Li H, Lei A. Nat. Commun. 2016; 7: 11676
  • 321 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DWC. Nature (London) 2018; 560: 70
  • 322 Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y.-h, Sherer EC, MacMillan DWC. Nat. Chem. 2020; 12: 459
  • 323 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 324 Yao H, Liu Y, Tyagarajan S, Streckfuss E, Reibarkh M, Chen K, Zamora I, Fontaine F, Goracci L, Helmy R, Bateman KP, Krska SW. Eur. J. Org. Chem. 2017; 7122