Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00313
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.14 Palladium(I)-Mediated Reactions

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

Several elegant reactivities can be observed in reactions involving palladium(I) species, allowing access to molecular architectures that are often beyond the capabilities of popular diamagnetic palladium complexes. This review presents three main axes of research in this context, which have mostly emerged in the last decade. Reactions promoted by visible light enable synthetic methods that are unusual in their mild experimental conditions coupled with remarkably broad functional group tolerance. The use of discrete palladium(I) dimers as precatalysts allows one to perform a wide set of cross-coupling protocols, such as Kumada and Negishi reactions, and chalcogenation reactions, with a surgical precision on the carbon—halogen bond that is initially activated. The generation of alkyl radicals and palladium(I) species through a thermal strategy proves useful for the elaboration of substrates with several polyfluorinated fragments, which are otherwise elusive coupling partners for more common two-electron processes.

 
  • 1 Van Leeuwen PWNM, Roobeek CF, Huis R. J. Organomet. Chem. 1977; 142: 233
  • 2 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
  • 3 Chuentragool P, Kurandina D, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 11586
  • 4 Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
  • 5 Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
  • 6 Wang G.-Z, Shang R, Cheng W.-M, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
  • 7 Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
  • 8 Jiao Z, Lim LH, Hirao H, Zhou JS. Angew. Chem. Int. Ed. 2018; 57: 6294
  • 9 Sun L, Ye J.-H, Zhou W.-J, Zeng X, Yu D.-G. Org. Lett. 2018; 20: 3049
  • 10 Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3412
  • 11 Werner H. Adv. Organomet. Chem. 1981; 19: 155
  • 12 Murahashi T, Kurosawa H. Coord. Chem. Rev. 2002; 231: 207
  • 13 Fricke C, Sperger T, Mendel M, Schoenebeck F. Angew. Chem. Int. Ed. 2020;
  • 14 Bonney KJ, Proutiere F, Schoenebeck F. Chem. Sci. 2013; 4: 4434
  • 15 Blanchard S, Fensterbank L, Gontard G, Lacôte E, Maestri G, Malacria M. Angew. Chem. Int. Ed. 2014; 53: 1987
  • 16 Kulichenko M, Fedik N, Monfredini A, Muñoz-Castro A, Balestri D, Boldyrev AI, Maestri G. Chem. Sci. 2020; 12: 477
  • 17 Aufiero M, Sperger T, Tsang AS.-K, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 10322
  • 18 Yin G, Kalvet I, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 6809
  • 19 Scattolin T, Senol E, Yin G, Guo Q, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 12425
  • 20 Kalvet I, Sperger T, Scattolin T, Magnin G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 7078
  • 21 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
  • 22 Rossi R, Bellina F, Lessi M. Adv. Synth. Catal. 2012; 354: 1181
  • 23 Tsuji J, Sato K, Nagashima H. Tetrahedron 1985; 41: 393
  • 24 Chen Q.-Y, Yang Z.-Y, Zhao C.-X, Qiu Z.-M. J. Chem. Soc., Perkin Trans. 1 1988; 563
  • 25 Motoda D, Kinoshita H, Shinokubo H, Oshima K. Adv. Synth. Catal. 2002; 344: 261
  • 26 Manolikakes G, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 205
  • 27 Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H. ACS Catal. 2015; 5: 6111
  • 28 Zhang F, Min Q.-Q, Zhang X. Synthesis 2015; 47: 2912
  • 29 Teng S, Tessensohn ME, Webster RD, Zhou JS. ACS Catal. 2018; 8: 7439
  • 30 He Y.-T, Wang Q, Li L.-H, Liu X.-Y, Xu P.-F, Liang Y.-M. Org. Lett. 2015; 17: 5188
  • 31 Natte K, Jagadeesh RV, He L, Rabeah J, Chen J, Taeschler C, Ellinger S, Zaragoza F, Neumann H, Brückner A, Beller M. Angew. Chem. Int. Ed. 2016; 55: 2782
  • 32 Zheng J, Chen P, Yuan Y, Cheng J. J. Org. Chem. 2017; 82: 5790
  • 33 Wang Q, He Y.-T, Zhao J.-H, Qiu Y.-F, Zheng L, Hu J.-Y, Yang Y.-C, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 2664
  • 34 Wang Y.-Q, He Y.-T, Zhang L.-L, Wu X.-X, Liu X.-Y, Liang Y.-M. Org. Lett. 2015; 17: 4280
  • 35 Yu L.-Z, Zhu Z.-Z, Hu X.-B, Tang X.-Y, Shi M. Chem. Commun. (Cambridge) 2016; 52: 6581
  • 36 Wang X, Hu J, Ren J, Wu T, Wu J, Wu F. Tetrahedron 2019; 75: 130715