Rutjes, F. P. J. T. : 2022 Science of Synthesis, 2021/4: Click Chemistry DOI: 10.1055/sos-SD-235-00118
Click Chemistry

3 Ruthenium-Catalyzed Azide–Alkyne Cycloaddition (RuAAC)

More Information

Book

Editor: Rutjes, F. P. J. T.

Authors: Agrahari, A. K.; Alabugin, I. V. ; Beke-Somfai, T. ; Blanco-Ania, D. ; Bratlie, K. M. ; Carlson, J. C. T. ; Friscourt, F. ; Giel, M.-C. ; Harris, T. ; Houk, K. N. ; Janssen, L. J. N.; Kacprzak, K. M.; Kann, N. ; Kovalová, A.; Kuba, W. ; La Venia, A.; Liskamp, R. M. J. ; Meuleman, T. J.; Mikula, H. ; Mishra, A.; Moses, J. E. ; Ort, F. F.; Page, K. M.; Paterson, A. J. ; Rutkowski, J.; Singh, R.; Sinha, A. K.; Skiera, I.; Smedley, C. J. ; Svatunek, D. ; Tiwari, V. K. ; van Hest, J. C. M. ; Vrabel, M. ; Wilkovitsch, M. ; Xu, Z.; Zhang, C.

Title: Click Chemistry

Print ISBN: 9783132435568; Online ISBN: 9783132435575; Book DOI: 10.1055/b000000077

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Under ruthenium catalysis, 1,5-disubstituted 1,2,3-triazoles can be accessed with high selectivity from terminal alkynes and organic azides via a ruthenium-catalyzed azide–alkyne cycloaddition (RuAAC) reaction. These conditions also allow the use of internal alkynes, providing access to 1,4,5-trisubstituted 1,2,3-triazoles. This chapter reviews the scope and limitations of the RuAAC reaction, as well as selected applications. A brief mention of azide–alkyne cycloaddition reactions catalyzed by other metals is also included.

 
  • 1 Forezi LdaSM, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, da Silva FdeC, Ferreira VF. Chem. Rec.. 2021;
  • 2 Delaittre G, Guimard NK, Barner-Kowollik C. Acc. Chem. Res.. 2015; 48: 1296
  • 3 Torres-Moya I, Arrechea-Marcos I, Tardío C, Carrillo JR, Díaz-Ortiz , López Navarrete JT, Ruiz Delgado MC, Prieto P, Ponce Ortiz R. RSC Adv.. 2018; 8: 21879
  • 4 Huisgen R, 1,3-Dipolar Cycloaddition Chemistry. Padwa A. Wiley Interscience; New York 1984. p 1.
  • 5 Kirmse W, Horner L. Liebigs Ann. Chem.. 1958; 614: 1
  • 6 Tornøe CW, Christensen C, Meldal M. J. Org. Chem.. 2002; 67: 3057
  • 7 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed.. 2002; 41: 2596
  • 9 Wang C, Ikhlef D, Kahlal S, Saillard J.-Y, Astruc D. Coord. Chem. Rev.. 2016; 316: 1
  • 10 Haldón E, Nicasio MC, Pérez PJ. Org. Biomol. Chem.. 2015; 13: 9528
  • 11 Hein JE, Fokin VV. Chem. Soc. Rev.. 2010; 39: 1302
  • 12 Sokolova NV, Nenajdenko VG. RSC Adv.. 2013; 3: 16212
  • 13 Devaraj NK, Collman JP. QSAR Comb. Sci.. 2007; 26: 1253
  • 14 Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc.. 2005; 127: 15998
  • 15 Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc.. 2008; 130: 8923
  • 16 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc.. 2005; 127: 210
  • 18 Liu PN, Li J, Su FH, Ju KD, Zhang L, Shi C, Sung HHY, Williams ID, Fokin VV, Lin Z, Jia G. Organometallics. 2012; 31: 4904
  • 19 Boz E, Tüzün NŞ. J. Organomet. Chem.. 2013; 724: 167
  • 20 Yousfi Y, Benchouk W, Mekelleche SM. Theor. Chem. Acc.. 2021; 140: 4
  • 21 Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Chem. Rev.. 2016; 116: 14726
  • 22 Keicher T, Löbbecke S, Organic Azides: Synthesis and Applications. Bräse S, Banert K. John Wiley & Sons; Chichester 2010. p 1.
  • 23 Yap AH, Weinreb SM. Tetrahedron Lett.. 2006; 47: 3035
  • 24 Majireck MM, Weinreb SM. J. Org. Chem.. 2006; 71: 8680
  • 25 Liu P, Clark RJ, Zhu L. J. Org. Chem.. 2018; 83: 5092
  • 26 Ramasamy S, Petha C, Tendulkar S, Maity P, Eastgate MD, Vaidyanathan R. Org. Process Res. Dev.. 2018; 22: 880
  • 27 Knutson PC, Fredericks HE, Ferreira EM. Org. Lett.. 2018; 20: 6845
  • 28 Pribut N, Veale CGL, Basson AE, van Otterlo WAL, Pelly SC. Bioorg. Med. Chem. Lett.. 2016; 26: 3700
  • 29 Oakdale JS, Sit RK, Fokin VV. Chem.–Eur. J.. 2014; 20: 11101
  • 30 Gribanov PS, Chesnokov GA, Topchiy MA, Asachenko AF, Nechaev MS. Org. Biomol. Chem.. 2017; 15: 9575
  • 31 Gribanov PS, Chesnokov GA, Dzhevakov PB, Kirilenko NY, Rzhevskiy SA, Ageshina AA, Topchiy MA, Bermeshev MV, Asachenko AF, Nechaev MS. Mendeleev Commun.. 2019; 29: 147
  • 32 Shen Q, Han E.-J, Huang Y.-G, Chen Q.-Y, Guo Y. Synthesis. 2015; 47: 3936
  • 33 Oppilliart S, Mousseau G, Zhang L, Jia G, Thuéry P, Rousseau B, Cintrat J.-C. Tetrahedron. 2007; 63: 8094
  • 34 Ferrini S, Chandanshive JZ, Lena S, Franchini MC, Giannini G, Tafi A, Taddei M. J. Org. Chem.. 2015; 80: 2562
  • 35 Díaz JL, Christmann U, Fernández A, Torrens A, Port A, Pascual R, Álvarez I, Burgueño J, Monroy X, Montero A, Balada A, Vela JM, Almansa C. J. Med. Chem.. 2015; 58: 2441
  • 36 Destito P, Couceiro JR, Faustino H, López F, Mascareñas JL. Angew. Chem. Int. Ed.. 2017; 56: 10766
  • 38 Buysse K, Farard J, Nikolaou A, Vanderheyden P, Vauquelin G, Pedersen DS, Tourwé D, Ballet S. Org. Lett.. 2011; 13: 6468
  • 39 Pradere U, Roy V, McBrayer TR, Schinazi RF, Agrofoglio LA. Tetrahedron. 2008; 64: 9044
  • 40 Said Stålsmeden A, Paterson AJ, Szigyártó IC, Thunberg L, Johansson JR, Beke-Somfai T, Kann N. Org. Biomol. Chem.. 2020; 18: 1957
  • 41 Kwak JM, Moon JS, Seo S, Choi JI, Sampath V, Lee H.-Y, Koh HY. Bull. Korean Chem. Soc.. 2014; 35: 3675
  • 42 Bahia SBBB, Reis WJ, Jardim GAM, Souto FT, de Simone CA, Gatto CC, Menna-Barreto RFS, de Castro SL, Cavalcanti BC, Pessoa C, Araujo MH, da Silva Júnior EN. MedChemComm. 2016; 7: 1555
  • 43 Zhu M, Lim BJ, Koh M, Park SB. ACS Comb. Sci.. 2012; 14: 124
  • 44 Kocsis L, Szabó I, Bősze S, Jernei T, Hudecz F, Csámpai A. Bioorg. Med. Chem. Lett.. 2016; 26: 946
  • 45 Pettersson M, Bliman D, Jacobsson J, Nilsson JR, Min J, Iconaru L, Guy RK, Kriwacki RW, Andréasson J, Grøtli M. PLoS One. 2015; 10: e0 124 423
  • 46 Tischler M, Nasu D, Empting M, Schmelz S, Heinz DW, Rottmann P, Kolmar H, Buntkowsky G, Tietze D, Avrutina O. Angew. Chem. Int. Ed.. 2012; 51: 3708
  • 47 Wiebe C, Schlemmer C, Weck S, Opatz T. Chem. Commun. (Cambridge). 2011; 47: 9212
  • 48 Fox KA, Chadda R, Cardona F, Barron S, McArdle P, Murphy PV. Tetrahedron. 2020; 76: 131495
  • 49 Johansson JR, Lincoln P, Nordén B, Kann N. J. Org. Chem.. 2011; 76: 2355
  • 50 Rasmussen LK, Boren BC, Fokin VV. Org. Lett.. 2007; 9: 5337
  • 51 Montagu A, Roy V, Balzarini J, Snoeck R, Andrei G, Agrofoglio LA. Eur. J. Med. Chem.. 2011; 46: 778
  • 52 Chouaïb K, Delemasure S, Dutartre P, Ben Jannet H. J. Enzyme Inhib. Med. Chem.. 2016; 31: 130
  • 53 Chouaïb K, Romdhane A, Delemasure S, Dutartre P, Elie N, Touboul D, Ben Jannet H. Arabian J. Chem.. 2019; 12: 3732
  • 54 de Andrade P, Galo OA, Carvalho MR, Lopes CD, Carneiro ZA, Sesti-Costa R, de Melo EB, Silva JS, Carvalho I. Bioorg. Med. Chem.. 2015; 23: 6815
  • 55 Johansson JR, Hermansson E, Nordén B, Kann N, Beke-Somfai T. Eur. J. Org. Chem.. 2014; 2703
  • 56 Kann N, Johansson JR, Beke-Somfai T. Org. Biomol. Chem.. 2015; 13: 2776
  • 57 Kracker O, Góra J, Krzciuk-Gula J, Marion A, Neumann B, Stammler H.-G, Nieß A, Antes I, Latajka R, Sewald N. Chem.–Eur. J.. 2018; 24: 953
  • 58 Horne WS, Olsen CA, Beierle JM, Montero A, Ghadiri MR. Angew. Chem. Int. Ed.. 2009; 48: 4718
  • 59 Empting M, Avrutina O, Meusinger R, Fabritz S, Reinwarth M, Biesalski M, Voigt S, Buntkowsky G, Kolmar H. Angew. Chem. Int. Ed.. 2011; 50: 5207
  • 60 Pacifico S, Kerckhoffs A, Fallow AJ, Foreman RE, Guerrini R, McDonald J, Lambert DG, Jamieson AG. Org. Biomol. Chem.. 2017; 15: 4704
  • 61 Wrobel M, Aubé J, König B. Beilstein J. Org. Chem.. 2012; 8: 1027
  • 62 Engholm E, Stuhr-Hansen N, Blixt O. Tetrahedron Lett.. 2017; 58: 2272
  • 63 Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J. Am. Chem. Soc.. 2013; 135: 4333
  • 64 Knuhtsen A, Whitmore C, McWhinnie FS, McDougall L, Whiting R, Smith BO, Timperley CM, Green AC, Kinnear KI, Jamieson AG. Chem. Sci.. 2019; 10: 1671
  • 65 Scriven EFV, Turnbull K. Chem. Rev.. 1988; 88: 297
  • 66 Feldman AK, Colasson B, Fokin VV. Org. Lett.. 2004; 6: 3897
  • 67 Taqui Khan MM, Bhadbhade MM, Siddiqui MRH, Venkatasubramanian K, Tikhonova JA. Acta Crystallogr., Sect. C. 1994; 50: 502
  • 68 Wicker AC, Leibfarth FA, Jamison TF. Polym. Chem.. 2017; 8: 5786
  • 69 Siyang HX, Liu HL, Wu XY, Liu PN. RSC Adv.. 2015; 5: 4693
  • 70 Arafa WAA, Nayl AE.-AA. Appl. Organomet. Chem.. 2019; 33: e5156
  • 71 Dhameja M, Kumar H, Gupta P. Asian J. Org. Chem.. 2020; 9: 721
  • 72 Agalave SG, Maujan SR, Pore VS. Chem.–Asian J.. 2011; 6: 2696
  • 73 Dheer D, Singh V, Shankar R. Bioorg. Chem.. 2017; 71: 30
  • 74 Pedersen DS, Abell A. Eur. J. Org. Chem.. 2011; 2399
  • 75 Yoshida S, Kanno K, Kii I, Misawa Y, Hagiwara M, Hosoya T. Chem. Commun. (Cambridge). 2018; 54: 3705
  • 76 Barlow TMA, Tourwé D, Ballet S. Eur. J. Org. Chem.. 2017; 4678
  • 77 Kelly AR, Wei J, Kesavan S, Marié J.-C, Windmon N, Young DW, Marcaurelle LA. Org. Lett.. 2009; 11: 2257
  • 78 Zhang J, Kemmink J, Rijkers DTS, Liskamp RMJ. Org. Lett.. 2011; 13: 3438
  • 79 Isidro-Llobet A, Murillo T, Bello P, Cilibrizzi A, Hodgkinson JT, Galloway WRJD, Bender A, Welch M, Spring DR. Proc. Natl. Acad. Sci. U. S. A.. 2011; 108: 6793
  • 80 Trabocchi A, Guarna A. Peptidomimetics in Organic and Medicinal Chemistry: The Art of Transforming Peptides in Drugs. Wiley; Chichester 2014
  • 81 Tam A, Arnold U, Soellner MB, Raines RT. J. Am. Chem. Soc.. 2007; 129: 12670
  • 82 Roux S, Ligeti M, Buisson D.-A, Rousseau B, Cintrat J.-C. Amino Acids. 2010; 38: 279
  • 83 Kee J.-M, Villani B, Carpenter LR, Muir TW. J. Am. Chem. Soc.. 2010; 132: 14327
  • 84 Foldamers: Structure, Properties and Applications. Hecht S, Huc I. Wiley-VCH; Weinheim, Germany 2007
  • 85 Iglesias LE, Lewkowicz ES, Medici R, Bianchi P, Iribarren AM. Biotechnol. Adv.. 2015; 33: 412
  • 86 Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF. Chem. Rev.. 2014; 114: 9154
  • 87 Hernández D, Boto A. Eur. J. Org. Chem.. 2014; 2201
  • 88 Hornum M, Djukina A, Sassnau A.-K, Nielsen P. Org. Biomol. Chem.. 2016; 14: 4436
  • 89 Sirivolu VR, Vernekar SKV, Ilina T, Myshakina NS, Parniak MA, Wang Z. J. Med. Chem.. 2013; 56: 8765
  • 90 Vernekar SKV, Qiu L, Zhang J, Kankanala J, Li H, Geraghty RJ, Wang Z. J. Med. Chem.. 2015; 58: 4016
  • 91 Chemama M, Fonvielle M, Arthur M, Valéry J.-M, Etheve-Quelquejeu M. Chem.–Eur. J.. 2009; 15: 1929
  • 92 Baker YR, Traoré D, Wanat P, Tyburn A, El-Sagheer AH, Brown T. Tetrahedron. 2020; 76: 130914
  • 93 Varizhuk AM, Kaluzhny DN, Novikov RA, Chizhov AO, Smirnov IP, Chuvilin AN, Tatarinova ON, Fisunov GY, Pozmogova GE, Florentiev VL. J. Org. Chem.. 2013; 78: 5964
  • 94 El-Sagheer AH, Brown T. Chem. Commun. (Cambridge). 2011; 47: 12057
  • 95 Ruan Y.-B, Yu Y, Li C, Bogliotti N, Tang J, Xie J. Tetrahedron. 2013; 69: 4603
  • 96 Orselli E, Albuquerque RQ, Fransen PM, Fröhlich R, Janssen HM, De Cola L. J. Mater. Chem.. 2008; 18: 4579
  • 97 Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Altuntaş E, Kübel J, Guntner O, Berlinguette CP, Dietzek B, Schubert US. Inorg. Chem.. 2014; 53: 2083
  • 98 Petersen AU, Jevric M, Moth-Poulsen K. Eur. J. Org. Chem.. 2018; 4465
  • 99 Qin A, Lam JWY, Tang BZ. Chem. Soc. Rev.. 2010; 39: 2522
  • 100 Nulwala H, Takizawa K, Odukale A, Khan A, Thibault RJ, Taft BR, Lipshutz BH, Hawker CJ. Macromolecules. 2009; 42: 6068
  • 101 Lartey M, Gillissen M, Adzima BJ, Takizawa K, Luebke DR, Nulwala HB. J. Polym. Sci., Part A: Polym. Chem.. 2013; 51: 3359
  • 102 Praud A, Bootzeek O, Blache Y. Green Chem.. 2013; 15: 1138
  • 103 Brady SE, Shultz GV, Tyler DR. J. Inorg. Organomet. Polym. Mater.. 2010; 20: 511
  • 104 Brei MR, Cooke III RH, Hanson DJ, Gray CT, Storey RF. J. Macromol. Sci., Part A: Pure Appl. Chem.. 2016; 53: 413
  • 105 Guo JL, Kim YS, Xie VY, Smith BT, Watson E, Lam J, Pearce HA, Engel PS, Mikos AG. Sci. Adv.. 2019; 5: eaaw7396
  • 106 Huang D, Liu Y, Qin A, Tang BZ. Macromolecules. 2019; 52: 1985
  • 107 Pola R, Braunová A, Laga R, Pechar M, Ulbrich K. Polym. Chem.. 2014; 5: 1340
  • 108 Pola R, Laga R, Ulbrich K, Sieglová I, Král V, Fábry M, Kabešová M, Kovář M, Pechar M. Biomacromolecules. 2013; 14: 881
  • 109 Qin A, Lam JWY, Jim CKW, Zhang L, Yan J, Häussler M, Liu J, Dong Y, Liang D, Chen E, Jia G, Tang BZ. Macromolecules. 2008; 41: 3808
  • 110 Neto JSS, Zeni G. Coord. Chem. Rev.. 2020; 409: 213217
  • 111 Gomes RS, Jardim GAM, de Carvalho RL, Araujo MH, da Silva Júnior EN. Tetrahedron. 2019; 75: 3697
  • 112 Jalani HB, Karagöz AÇ, Tsogoeva SB. Synthesis. 2017; 49: 29
  • 113 Kim WG, Kang ME, Lee JB, Jeon MH, Lee S, Lee J, Choi B, Cal PMSD, Kang S, Kee J.-M, Bernardes GJL, Rohde J.-U, Choe W, Hong SY. J. Am. Chem. Soc.. 2017; 139: 12121
  • 114 Zeng L, Lai Z, Zhang C, Xie H, Cui S. Org. Lett.. 2020; 22: 2220
  • 116 Ding S, Jia G, Sun J. Angew. Chem. Int. Ed.. 2014; 53: 1877
  • 117 Rasolofonjatovo E, Theeramunkong S, Bouriaud A, Kolodych S, Chaumontet M, Taran F. Org. Lett.. 2013; 15: 4698
  • 118 Luo Q, Jia G, Sun J, Lin Z. J. Org. Chem.. 2014; 79: 11970
  • 119 Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. ACS Catal.. 2017; 7: 7529
  • 120 Song W, Zheng N, Li M, Dong K, Li J, Ullah K, Zheng Y. Org. Lett.. 2018; 20: 6705