Bäckvall, J.-E. : 2023 Science of Synthesis, 2022/4: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT) DOI: 10.1055/sos-SD-237-00092
Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

7 Applications of Chemoenzymatic Dynamic Kinetic Resolution for the Synthesis of Biologically Active Compounds and Natural Products

More Information

Book

Editor: Bäckvall, J.-E.

Authors: Adriaensen, K. ; Akai, S. ; Berreur, J. ; Bhat, V. ; Clayden, J. ; Collins, B. S. L. ; Córdova, A. ; De Vos, D. ; Deiana, L.; Faber, K. ; Fletcher, S. P. ; Goetzke, F. W. ; González-Granda, S. ; Gotor-Fernández, V. ; Hafeman, N. J. ; Jin, Z. ; Kanomata, K. ; Kroutil, W. ; Liu, Y.; Modicom, F.; Pàmies, O. ; Sardini, Jr., S. R.; Stoltz, B. M. ; Winkler, C. K. ; Wu, X. ; Xie, J.-H. ; Zhang, K.; Zhou, Q.-L.

Title: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

Print ISBN: 9783132453777; Online ISBN: 9783132453791; Book DOI: 10.1055/b000000439

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Dynamic kinetic resolutions of racemic compounds provide elegant synthetic possibilities for the preparation of valuable enantiopure organic molecules with a theoretical maximum 100% yield. This chapter describes the combination of stereoselective enzymatic methods with suitable conditions for the racemization of the slow-reacting enantiomer from racemates of various types of compounds, such as alcohols, amines, and amino acids, for the synthesis of biologically active compounds and natural products. This contribution has been divided into three main topics based on the enzyme that catalyzes the asymmetric transformation and the racemization conditions of choice. These are: (i) the use of hydrolases and metal species; (ii) the use of hydrolases without requiring a metal catalyst for the racemization step; (iii) the use of other enzyme classes. A selection of scalable experimental procedures is provided in each case to demonstrate the robustness of the methodology described.

 
  • 1 Pellissier H. Tetrahedron 2003; 59: 8291
  • 2 Pellissier H. Tetrahedron 2008; 64: 1563
  • 3 Pellissier H. Adv. Synth. Catal. 2011; 353: 659
  • 4 Pellissier H. Tetrahedron 2011; 67: 3769
  • 5 Pellissier H. Tetrahedron 2016; 72: 3133
  • 6 Bäckvall J.-E, Pàmies O. Chem. Rev. 2003; 103: 3247
  • 7 Pàmies O, Bäckvall J.-E. Trends Biotechnol. 2004; 22: 130
  • 8 Martín-Matute B, Bäckvall J.-E. Curr. Opin. Chem. Biol. 2007; 11: 226
  • 9 Kamal A, Azhar MA, Krishnaji T, Malik MS, Azeeza S. Coord. Chem. Rev. 2008; 252: 569
  • 10 Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 999
  • 11 Kim Y, Park J, Kim M.-J. ChemCatChem 2011; 3: 271
  • 12 Hoyos P, Pace V, Alcántara AR. Adv. Synth. Catal. 2012; 354: 2585
  • 13 Marcos R, Martín-Matute B. Isr. J. Chem. 2012; 52: 639
  • 14 Akai S. Chem. Lett. 2014; 43: 746
  • 15 de Miranda AS, Miranda LSM, de Souza ROMA. Biotechnol. Adv. 2015; 33: 372
  • 16 Långvik O, Saloranta T, Murzin DY, Leino R. ChemCatChem 2015; 7: 4004
  • 17 Verho O, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 3996
  • 18 Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Biocatal. Biotransform. 2018; 36: 102
  • 19 Mangas-Sánchez J, Rodríguez-Mata M, Busto E, Gotor-Fernández V, Gotor V. J. Org. Chem. 2009; 74: 5304
  • 20 Han K, Kim C, Park J, Kim M.-J. J. Org. Chem. 2010; 75: 3105
  • 21 Krumlinde P, Bogár K, Bäckvall J.-E. J. Org. Chem. 2009; 74: 7407
  • 22 Pàmies O, Bäckvall J.-E. J. Org. Chem. 2002; 67: 9006
  • 23 Träff A, Bogár K, Warner M, Bäckvall J.-E. Org. Lett. 2008; 10: 4807
  • 24 Johnston EV, Bogár K, Bäckvall J.-E. J. Org. Chem. 2010; 75: 4596
  • 25 Egi M, Sugiyama K, Saneto M, Hanada R, Kato K, Akai S. Angew. Chem. Int. Ed. 2013; 52: 3654
  • 26 Pàmies O, Bäckvall J.-E. Adv. Synth. Catal. 2001; 343: 726 Adv. Synth. Catal. 2002; 344: 947.
  • 27 Träff A, Lihammar R, Bäckvall J.-E. J. Org. Chem. 2011; 76: 3917
  • 28 Pàmies O, Bäckvall J.-E. J. Org. Chem. 2001; 66: 4022 J. Org. Chem. 2002; 67: 1418
  • 29 Lee J, Oh Y, Choi YK, Choi E, Kim K, Park J, Kim M.-J. ACS Catal. 2015; 5: 683
  • 30 Warner MC, Shevchenko GA, Jouda S, Bogár K, Bäckvall J.-E. Chem.–Eur. J. 2013; 19: 13859
  • 31 Das T, Nanda S. Tetrahedron Lett. 2012; 53: 256
  • 32 Warner MC, Nagendiran A, Bogár K, Bäckvall J.-E. Org. Lett. 2012; 14: 5094
  • 33 Akai S, Hanada R, Fujiwara N, Kita Y, Egi M. Org. Lett. 2010; 12: 4900
  • 34 Komaki R, Ikawa T, Saito K, Hattori K, Ishikawa N, Fukawa H, Egi M, Akai S. Chem. Pharm. Bull. 2013; 61: 310
  • 35 Norinder J, Bogár K, Kanupp L, Bäckvall J.-E. Org. Lett. 2007; 9: 5095
  • 36 Rodríguez-Mata M, Gotor-Fernández V, González-Sabín J, Rebolledo F, Gotor V. Org. Biomol. Chem. 2011; 9: 2274
  • 37 Qian X, Jiang Z, Lin X, Wu Q. J. Polym. Sci. 2013; 51: 2049
  • 38 Xia B, Cheng G, Lin X, Wu Q. Eur. J. Org. Chem. 2014; 2917
  • 39 Ma G, Xu Z, Zhang P, Liu J, Hao X, Ouyang J, Liang P, You S, Jia X. Org. Process Res. Dev. 2014; 18: 1169
  • 40 Thalén LK, Zhao D, Sortais J.-B, Paetzold J, Hoben C, Bäckvall J.-E. Chem.–Eur. J. 2009; 15: 3403
  • 41 Choi YK, Kim MJ, Ahn Y, Kim M.-J. Org. Lett. 2001; 3: 4099
  • 42 Han K, Kim Y, Park J, Kim M.-J. Tetrahedron Lett. 2010; 51: 3536
  • 43 Cheng G, Wu Q, Shang Z, Liang X, Lin X. ChemCatChem 2014; 6: 2129
  • 44 Stirling M, Blacker J, Page MI. Tetrahedron Lett. 2007; 48: 1247
  • 45 Shakeri M, Engström K, Sandström AG, Bäckvall J.-E. ChemCatChem 2010; 2: 534
  • 46 Engström K, Shakeri M, Bäckvall J.-E. Eur. J. Org. Chem. 2011; 1827
  • 47 Koszelewski D, Brodzka A, Żądło A, Paprocki D, Trzepizur D, Zysk M, Ostaszewski R. ACS Catal. 2016; 6: 3287
  • 48 Ahn Y, Ko S.-B, Kim M.-J, Park J. Coord. Chem. Rev. 2008; 252: 647
  • 49 Schnell B, Faber K, Kroutil W. Adv. Synth. Catal. 2003; 345: 653
  • 50 Ahmed M, Kelly T, Ghanem A. Tetrahedron 2012; 68: 6781
  • 51 Ballard A, Narduolo S, Ahmed HO, Keymer NI, Asaad N, Cosgrove DA, Buurma NJ, Leach AG. Chem.–Eur. J. 2020; 26: 3661
  • 52 Musa MM. Chirality 2020; 32: 147
  • 53 Gu J, Ye L, Guo F, Lv X, Lu W, Yu H. Tetrahedron Lett. 2015; 56: 1489
  • 54 Wang Z.-Y, Xu L.-S, Gao J, Liu J.-Z, Zhang H.-J, Liu Q, Jiao Q.-C. Tetrahedron: Asymmetry 2012; 23: 1653
  • 55 Qiu J, Su E, Wang W, Wei D. Tetrahedron Lett. 2014; 55: 1448
  • 56 Limanto J, Shafiee A, Devine PN, Upadhyay V, Desmond RA, Foster BR, Gauthier DR, Reamer RA, Volante RP. J. Org. Chem. 2005; 70: 2372
  • 57 Truppo MD, Pollard DJ, Moore JC, Devine PN. Chem. Eng. Sci. 2008; 63: 122
  • 58 Chaplin DA, Fox ME, Kroll SHB. Chem. Commun. (Cambridge) 2014; 50: 5858
  • 59 Gianolio E, Mohan R, Berkessel A. Adv. Synth. Catal. 2016; 358: 30
  • 60 Hacking MAPJ, Wegman MA, Rops J, van Rantwijk F, Sheldon RA. J. Mol. Catal. B: Enzym. 1998; 5: 155
  • 61 Wegman MA, Hacking MAPJ, Rops J, Pereira P, van Rantwijk F, Sheldon RA. Tetrahedron: Asymmetry 1999; 10: 1739
  • 62 Tessaro D, Cerioli L, Servi S, Viani F, D′ Arrigo P. Adv. Synth. Catal. 2011; 353: 2333
  • 63 Falus P, Cerioli L, Bajnóczi G, Boros Z, Weiser D, Nagy J, Tessaro D, Servi S, Poppe L. Adv. Synth. Catal. 2016; 358: 1608
  • 64 Paál TA, Forró E, Liljeblad A, Kanerva LT, Fülöp F. Tetrahedron: Asymmetry 2007; 18: 1428
  • 65 Paál TA, Liljeblad A, Kanerva LT, Forró E, Fülöp F. Eur. J. Org. Chem. 2008; 5269
  • 66 Forró E, Megyesi R, Paál TA, Fülöp F. Tetrahedron: Asymmetry 2016; 27: 1213
  • 67 Megyesi R, Mandi A, Kurtan T, Forró E, Fülöp F. Eur. J. Org. Chem. 2017; 4713
  • 68 Hietanen A, Lundell K, Kanerva LT, Liljeblad A. ARKIVOC 2012; 60
  • 69 Morán-Ramallal R, Gotor-Fernández V, Laborda P, Sayago FJ, Cativiela C, Gotor V. Org. Lett. 2012; 14: 1696
  • 70 Hu L, Schaufelberger F, Zhang Y, Ramström O. Chem. Commun. (Cambridge) 2013; 49: 10376
  • 71 Zhang Y, Schaufelberger F, Sakulsombat M, Liu C, Ramström O. Tetrahedron 2014; 70: 3826
  • 72 Zhang Y, Zhang Y, Ramström O. Catal. Rev. 2020; 62: 66
  • 73 Applegate GA, Berkowitz DB. Adv. Synth. Catal. 2015; 357: 1619
  • 74 Friest JA, Maezato Y, Broussy S, Blum P, Berkowitz DB. J. Am. Chem. Soc. 2010; 132: 5930
  • 75 Galletti P, Emer E, Gucciardo G, Quintavalla A, Pori M, Giacomini D. Org. Biomol. Chem. 2010; 8: 4117
  • 76 Díaz-Rodríguez A, Ríos-Lombardía N, Sattler JH, Lavandera I, Gotor-Fernández V, Kroutil W, Gotor V. Catal. Sci. Technol. 2015; 5: 1443
  • 77 Kalaitzakis D, Kambourakis S, Rozzell DJ, Smonou I. Tetrahedron: Asymmetry 2007; 18: 2418
  • 78 Kalaitzakis D, Smonou I. Eur. J. Org. Chem. 2012; 43
  • 79 Applegate GA, Cheloha RW, Nelson DL, Berkowitz DB. Chem. Commun. (Cambridge) 2011; 47: 2420
  • 80 Xu F, Chung JYL, Moore JC, Liu Z, Yoshikawa N, Hoerrner RS, Lee J, Royzen M, Cleator E, Gibson AG, Dunn R, Maloney KM, Alam M, Goodyear A, Lynch J, Yasuda N, Devine PN. Org. Lett. 2013; 15: 1342
  • 81 Xu F, Kosjek B, Cabirol FL, Chen H, Desmond R, Park J, Gohel AP, Collier SJ, Smith DJ, Liu Z, Janey JM, Chung JYL, Alvizo O. Angew. Chem. Int. Ed. 2018; 57: 6863
  • 82 Prier CK, Lo MM.-C, Li H, Yasuda N. Adv. Synth. Catal. 2019; 361: 5140
  • 83 Cao J, Hyster TK. ACS Catal. 2020; 10: 6171
  • 84 DeHovitz JS, Loh YY, Kautzky JA, Nagao K, Meichan AJ, Yamauchi M, MacMillan DWC, Hyster TK. Science (Washington, D. C.) 2020; 369: 1113
  • 85 Pedragosa-Moreau S, Le Flohic A, Thienpondt V, Lefoulon F, Petit A.-M, Ríos-Lombardía N, Morís F, González-Sabín J. Adv. Synth. Catal. 2017; 359: 485
  • 86 Peng Z, Wong JW, Hansen EC, Puchlopek-Dermenci ALA, Clarke HJ. Org. Lett. 2014; 16: 860
  • 87 Fuchs CS, Farnberger JE, Steinkellner G, Sattler JH, Pickl M, Simon RC, Zepeck F, Gruber K, Kroutil W. Adv. Synth. Catal. 2018; 360: 768
  • 88 Dong W, Yao P, Wang Y, Wu Q, Zhu D. ChemCatChem 2020; 12: 6311
  • 89 Palomo JM. Chem. Commun. (Cambridge) 2019; 55: 9583