Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00307
Base-Metal Catalysis 2

2.10 Iron-Catalyzed Cross Coupling of Alkyl Electrophiles

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Over the past several decades, significant progress has been made in the field of transition-metal-catalyzed carbon–carbon bond formation. Among these advancements, iron-catalyzed reactions have garnered significant attention in organic chemistry due to their economic and environmental advantages. Iron complexes have emerged as highly promising catalysts for carbon–carbon coupling reactions. They possess several advantageous features, such as low cost, widespread availability, and lower toxicity compared to other transition metals commonly used as catalysts. Through the utilization of iron catalysts, the coupling of organometallic reagents with diverse substrates has been achieved, leading to the synthesis of a wide range of important organic compounds. In this review, the main focus is on iron-catalyzed cross-coupling reactions involving alkyl electrophiles and various organometallic reagents. These organometallic reagents include those based on organomagnesium, organozinc, organoaluminum, and organoboron nucleophiles. The objective is to create C—C bonds through these reactions. Iron salts, when combined with suitable additives or ligands, have been employed as efficient catalysts in these processes.

 
  • 1 Metal-Catalyzed Cross-Coupling Reactions and More. de Meijere A, Brase S, Oestreich M. Wiley-VCH; Weinheim, Germany 2014. 1. 2. 3.
  • 2 Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 3 Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Beller M, Bolm C. Wiley-VCH; Weinheim, Germany 2004: 1
  • 4 Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
  • 5 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9047
  • 6 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 7 Sain S, Jain S, Srivastava M, Vishwakarma R, Dwivedi J. Curr. Org. Synth. 2019; 16: 1105
  • 8 Henrion M, Ritleng V, Chetcuti MJ. ACS Catal. 2015; 5: 1283
  • 9 Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
  • 10 Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 11 Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
  • 12 Knappke CEI, Jacobi von Wangelin A. Chem. Soc. Rev. 2011; 40: 4948
  • 13 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
  • 14 Hu X. Chem. Sci. 2011; 2: 1867
  • 15 Nakamura E, Sato K. Nat. Mater. 2011; 10: 158
  • 16 Terao J, Kambe N. Acc. Chem. Res. 2008; 41: 1545
  • 17 Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
  • 18 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 19 Vechorkin O, Hu X. Angew. Chem. Int. Ed. 2009; 48: 2937
  • 20 Iron Catalysis in Organic Chemistry. Plietker B. Wiley-VCH; Weinheim, Germany 2008
  • 21 Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
  • 22 Bauer EB. Curr. Org. Chem. 2008; 12: 1341
  • 23 Piontek A, Bisz E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116
  • 24 Parchomyk T, Koszinowski K. Synthesis 2017; 49: 3269
  • 25 Guérinot A, Cossy J. Top. Curr. Chem. 2016; 374: 49
  • 26 Legros J, Figadère B. Nat. Prod. Rep. 2015; 32: 1541
  • 27 Nakamura E, Hatakeyama T, Ito S, Ishizuka K, Ilies L, Nakamura M. Org. React. (N. Y.) 2014; 83: 1
  • 28 Czaplik WM, Mayer M, Cvengroš J, Jacobi von Wangelin A. ChemSusChem 2009; 2: 396
  • 29 Sarhan AAO, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
  • 30 Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 1364
  • 31 Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
  • 32 Correa A, Garcia Mancheño O, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
  • 33 Adak L, Hatakeyama T, Nakamura M. Bull. Chem. Soc. Jpn. 2021; 94: 1125
  • 34 Metal-Catalyzed Cross-Coupling Reactions. Diederich F, Stang PJ. Wiley-VCH; Weinheim, Germany 1998
  • 35 Tamura M, Kochi JK. J. Am. Chem. Soc. 1971; 93: 1487
  • 36 Tamura M, Kochi JK. Synthesis 1971; 303
  • 37 Neumann SM, Kochi JK. J. Org. Chem. 1975; 40: 599
  • 38 Kwan CL, Kochi JK. J. Am. Chem. Soc. 1976; 98: 4903
  • 39 Kochi JK. Acc. Chem. Res. 1974; 7: 351
  • 40 Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
  • 41 Nagano T, Hayashi T. Org. Lett. 2004; 6: 1297
  • 42 Martin R, Fürstner A. Angew. Chem. Int. Ed. 2004; 43: 3955
  • 43 Bedford RB, Betham M, Bruce DW, Danopoulos AA, Frost RM, Hird M. J. Org. Chem. 2006; 71: 1104
  • 44 Dongol KG, Koh H, Sau M, Chai CLL. Adv. Synth. Catal. 2007; 349: 1015
  • 45 Cahiez G, Habiak V, Duplais C, Moyeux A. Angew. Chem. Int. Ed. 2007; 46: 4364
  • 46 Fürstner A, Martin R, Krause H, Seidel G, Goddard R, Lehmann CW. J. Am. Chem. Soc. 2008; 130: 8773
  • 47 Hatakeyama T, Nakagawa N, Nakamura M. Org. Lett. 2009; 11: 4496
  • 48 Bedford RB, Bruce DW, Frost RM, Goodby JW, Hird M. Chem. Commun. (Cambridge) 2004; 2822
  • 49 Bedford RB, Betham M, Bruce DW, Davis SA, Frost RM, Hird M. Chem. Commun. (Cambridge) 2006; 1398
  • 50 Bedford RB, Bruce DW, Frost RM, Hird M. Chem. Commun. (Cambridge) 2005; 4161
  • 51 Cahiez G, Duplais C, Moyeux A. Org. Lett. 2007; 9: 3253
  • 52 Gurinot A, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2007; 46: 6521
  • 53 Jin M, Nakamura M. Chem. Lett. 2011; 40: 1012
  • 54 Hatakeyama T, Fujiwara Y.-i, Okada Y, Itoh T, Hashimoto T, Kawamura S, Ogata K, Takaya H, Nakamura M. Chem. Lett. 2011; 40: 1030
  • 55 Ghorai SK, Jin M, Hatakeyama T, Nakamura M. Org. Lett. 2012; 14: 1066
  • 56 Sun C.-L, Krause H, Fürstner A. Adv. Synth. Catal. 2014; 356: 1281
  • 57 Parmar D, Henkel L, Dib J, Rueping M. Chem. Commun. (Cambridge) 2015; 51: 2111
  • 58 Bauer G, Cheung CW, Hu X. Synthesis 2015; 47: 1726
  • 59 Itadani S, Yashiro K, Aratani Y, Sekiguchi T, Kinoshita A, Moriguchi H, Ohta N, Takahashi S, Ishida A, Tajima Y, Hisaichi K, Ima M, Ueda J, Egashira H, Sekioka T, Kadode M, Yonetomi Y, Nakao T, Inoue A, Nomura H, Kitamine T, Fujita M, Nabe T, Yamaura Y, Matsumura N, Imagawa A, Nakayama Y, Takeuchi J, Ohmoto K. J. Med. Chem. 2015; 58: 6093
  • 60 Takeuchi J, Itadani S, Ueda J, Ono S, Nekado T, Fujita M. JP 2 012 025 739, 2012
  • 61 Noda D, Sunada Y, Hatakeyama T, Nakamura M, Nagashima H. J. Am. Chem. Soc. 2009; 131: 6078
  • 62 Ono Pharmaceutical, unpublished results.
  • 63 Guisán-Ceinos M, Tato F, Buñuel E, Calle P, Cárdenas DJ. Chem. Sci. 2013; 4: 1098
  • 64 Hatakeyama T, Okada Y, Yoshimoto Y, Nakamura M. Angew. Chem. Int. Ed. 2011; 50: 10973
  • 65 Cheung CW, Ren P, Hu X. Org. Lett. 2014; 16: 2566
  • 66 Jin M, Adak L, Nakamura M. J. Am. Chem. Soc. 2015; 137: 7128
  • 67 Nakamura M, Ito S, Matsuo K, Nakamura E. Synlett 2005; 1794
  • 68 Hatakeyama T, Nakagawa N, Nakamura M. Org. Lett. 2009; 11: 4496
  • 69 Bedford RB, Huwe M, Wilkinson MC. Chem. Commun. (Cambridge) 2009; 600
  • 70 Bedford RB, Hall MA, Hodges GR, Huwe M, Wilkinson MC. Chem. Commun. (Cambridge) 2009; 6430
  • 71 Hatakeyama T, Kondo Y, Fujiwara Y.-i, Takaya H, Ito S, Nakamura E, Nakamura M. Chem. Commun. (Cambridge) 2009; 1216
  • 72 Lin X, Zheng F, Qing F.-L. Organometallics 2012; 31: 1578
  • 73 Adams CJ, Bedford RB, Carter E, Gower NJ, Haddow MF, Harvey JN, Huwe M, Cartes MA, Mansell SM, Mendoza C, Murphy DM, Neeve EC, Nunn J. J. Am. Chem. Soc. 2012; 134: 10333
  • 74 Bedford RB, Carter E, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Murphy DM, Neeve EC, Nunn J. Angew. Chem. Int. Ed. 2013; 52: 1285
  • 75 Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TKM, Nakamura M. J. Am. Chem. Soc. 2017; 139: 10693
  • 76 Kawamura S, Ishizuka K, Takaya H, Nakamura M. Chem. Commun. (Cambridge) 2010; 46: 6054
  • 77 Kawamura S, Kawabata T, Ishizuka K, Nakamura M. Chem. Commun. (Cambridge) 2012; 48: 9376
  • 78 Kawamura S, Agata R, Nakamura M. Org. Chem. Front. 2015; 2: 1053
  • 79 Agata R, Kawamura S, Isozaki K, Nakamura M. Chem. Lett. 2019; 48: 238
  • 80 Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, Tamada Y, Ono T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
  • 81 Bedford RB, Brenner PB, Carter E, Carvell TW, Cogswell PM, Gallagher T, Harvey JN, Murphy DM, Neeve EC, Nunn J, Pye DR. Chem.–Eur. J. 2014; 20: 7935
  • 82 Bedford RB, Brenner PB, Carter E, Clifton J, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Kehl JA, Murphy DM, Neeve EC, Neidig ML, Nunn J, Snyder BER, Taylor J. Organometallics 2014; 33: 5767
  • 83 Nakajima S, Takaya H, Nakamura M. Chem. Lett. 2017; 46: 711
  • 84 Bedford RB, Gallagher T, Pye DR, Savage W. Synthesis 2015; 47: 1761
  • 85 Hashimoto T, Hatakeyama T, Nakamura M. J. Org. Chem. 2012; 77: 1168
  • 86 Nakagawa N, Hatakeyama T, Nakamura M. Chem. Lett. 2015; 44: 486
  • 87 Hatakeyama T, Hashimoto T, Kathriarachchi KKADS, Zenmyo T, Seike H, Nakamura M. Angew. Chem. Int. Ed. 2012; 51: 8834
  • 88 Agata R, Lu S, Matsuda H, Isozaki K, Nakamura M. Org. Biomol. Chem. 2020; 18: 3022
  • 89 Iwamoto T, Okuzono C, Adak L, Jin M, Nakamura M. Chem. Commun. (Cambridge) 2019; 55: 1128
  • 90 Atack TC, Lecker RM, Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
  • 91 Bedford RB, Brenner PB, Carter E, Gallagher T, Murphy DM, Pye DR. Organometallics 2014; 33: 5940
  • 92 Wang S, Sun M, Zhang H, Zhang J, He Y, Feng Z. CCS Chem. 2020; 2: 2164
  • 93 Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 94 Hedström A, Izakian Z, Vreto I, Wallentin C.-J, Norrby P.-O. Chem.–Eur. J. 2015; 21: 5946
  • 95 Bauer G, Wodrich MD, Scopelliti R, Hu X. Organometallics 2015; 34: 289
  • 96 Przyojski JA, Veggeberg KP, Arman HD, Tonzetich ZJ. ACS Catal. 2015; 5: 5938
  • 97 Neidig ML, Carpenter SH, Curran DJ, DeMuth JC, Fleischauer VE, Iannuzzi TE, Neate PGN, Sears JD, Wolford NJ. Acc. Chem. Res. 2019; 52: 140
  • 98 Daifuku SL, Al-Afyouni MH, Snyder BER, Kneebone JL, Neidig ML. J. Am. Chem. Soc. 2014; 136: 9132
  • 99 Daifuku SL, Kneebone JL, Snyder BER, Neidig ML. J. Am. Chem. Soc. 2015; 137: 11432
  • 100 Takaya H, Nakajima S, Nakagawa N, Isozaki K, Iwamoto T, Imayoshi R, Gower NJ, Adak L, Hatakeyama T, Honma T, Takagaki M, Sunada Y, Nagashima H, Hashizume D, Takahashi O, Nakamura M. Bull. Chem. Soc. Jpn. 2015; 88: 410
  • 101 Sharma AK, Sameera WMC, Jin M, Adak L, Okuzono C, Iwamoto T, Kato M, Nakamura M, Morokuma K. J. Am. Chem. Soc. 2017; 139: 16117
  • 102 Lee W, Zhou J, Gutierrez O. J. Am. Chem. Soc. 2017; 139: 16126
  • 103 Sharma AK, Nakamura M. Molecules 2020; 25: 3612