Indian Journal of Neurotrauma 2006; 03(01): 9-17
DOI: 10.1016/S0973-0508(06)80004-3
Review Article
Thieme Medical and Scientific Publishers Private Ltd.

A Clinician’s Guide to the Pathophysiology of Traumatic Brain Injury

Andranik Madikians
,
Christopher C Giza
*   Divisions of Critical Care & Neurosurgery and Pediatric Neurology, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
› Institutsangaben

Verantwortlicher Herausgeber dieser Rubrik:
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. April 2017 (online)

Abstract

Traumatic brain injury induces a complex pathophysiological cascade of cellular events. Central components of this response include increases in cerebral glucose uptake, reductions in cerebral blood flow, indiscriminate excitatory neurotransmitter release, ionic disequilibrium, and intracellular calcium accumulation. Acute glutamate release and nonspecific neuronal depolarization induce threatening perturbations in neuronal function. Restoration of homeostasis requires significant increases in glucose metabolism; however, there is often a concomitant reduction in cerebral blood flow, resulting in an uncoupling of supply and demand. Understanding the nature and timing of these processes provides the practicing clinician with a mechanistic rationale for acute physiological monitoring, aggressive interventions to address and minimize secondary injuries, implementation of advanced neuroimaging techniques, and careful monitoring return to normal activity in head injured patients.

 
  • References

  • 1 Engberg A, Teasdale TW. Traumatic brain injury in children in Denmark: a national 15-year study. Eur J Epidemiol 14 1998; 165-173
  • 2 Murgio A, Andrade FA, Sanchez Munoz MA, Boetto S, Leung KM. International Multicenter Study of Head Injury in Children. ISHIP Group. Childs Nerv Syst. 15 1999; 318-321
  • 3 Tsai WC, Chiu WT, Chiou HY, Choy CS, Hung CC, Tsai SH. Pediatric traumatic brain injuries in Taiwan: an 8-year study. J Clin Neurosci 11 2004; 126-129
  • 4 Thurman,D.J. Traumatic Brain Injury (TBI) in the United States: Assessing Outcomes in Children - Appendix B. 2000. Internet Communication
  • 5 Weiner H.L., Weinberg J.S.. Head Injury. Cooper P.R., Golfinos J.G.. (eds.), 2000. McGraw-Hill Medical Publishing Division; San Francisco: 419-456
  • 6 Kraus JF., McArthur D.L., Silverman T.A., Jayaraman M.. Epidemiology of Brain Injury. In: Narayan RK, Wilberger JE, Povlishock JT. editors. Neurotrauma. 1996. McGraw-Hill; San Francisco: 13-30
  • 7 McCarthy M.L., Serpi T., Kufera J.A., Demeter L.A., Paidas C.. Factors influencing admission among children with a traumatic brain injury. Acad Emerg Med. 09 2002; 684-693
  • 8 Sosin DM, Sniezek JE, Waxweiler RJ. Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA 273 1995; 1778-1780
  • 9 Rivara FP. Epidemiology and prevention of pediatric traumatic brain injury. Pediatr Ann 23 1994; 12-17
  • 10 Kraus J.F., McArthur D.L.. Epidemiology of Head Injury. In: Cooper PR, Golfinos JG. editors. Head Injury. 2000. McGraw-Hill; San Francisco: 1-25
  • 11 Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17 2004; 711-718
  • 12 Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24 2004; 133-150
  • 13 Hovda D.A.. Metabolic Dysfunction. In: Narayan R.K., Wilberger J.E., Povlishock J.T.. edited by Neurotrauma. 1996. McGraw-Hill; San Francisco: 1459-1478
  • 14 Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22 2005; 3-41
  • 15 Bergsneider M, Hovda DA, McArthur DL. et al Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabilr 16 2001; 135-148
  • 16 Reinert M, Hoelper B, Doppenberg E, Zauner A, Bullock R. Substrate delivery and ionic balance disturbance after severe human head injury. Acta Neurochir Suppl 76 2000; 439-444
  • 17 Vespa P, Prins M, Ronne-Engstrom E. et al Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89 1998; 971-982
  • 18 Berney J, Froidevaux AC, Favier J. Paediatric head trauma: influence of age and sex. II. Biomechanical and anatomoclinical correlations. Childs Nerv Syst 10 1994; 517-523
  • 19 Bruce DA, Raphaely RC, Goldberg AI. et al Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain 05 1979; 174-191
  • 20 Levi L, Guilburd JN, Linn S, Feinsod M. The association between skull fracture, intracranial pathology and outcome in pediatric head injury. Br J Neurosurg 05 1991; 617-625
  • 21 Luerssen TG, Klauber MR, Marshall LF. Outcome from head injury related to patient's age. A longitudinal prospective study of adult and pediatric head injury. J Neurosurg 68 1988; 409-416
  • 22 Margulies SS, Thibault KL. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng 122 2000; 364-371
  • 23 Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH. MRI of normal brain maturation. AJNR 07 1986; 201-208
  • 24 Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54 2001; 255-266
  • 25 Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res 561 1991; 106-119
  • 26 Bergsneider M, Hovda DA, Lee SM. et al Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 17 2000; 389-401
  • 27 Hattori N, Huang SC, Wu HM. et al Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injury. J Nucl Med 44 2003; 1709-1716
  • 28 Bull RJ, Lutkenhoff SD. Early changes in respiration, aerobic glycolysis and cellular NAD(P)H in slices of rat cerebral cortex exposed to elevated concentrations of potassium. J Neurochem 21 1973; 913-922
  • 29 Lewis DV, Schuette WH. NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. J Neurophysiol 38 1975; 405-417
  • 30 Lothman E, Lamanna J, Cordingley G, Rosenthal M, Somjen G. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88 1975; 15-36
  • 31 Mayevsky A, Zeuthen T, Chance B. Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res 76 1974; 347-349
  • 32 Rosenthal M, LaManna J, Yamada S, Younts W, Somjen G. Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ. Brain Res 162 1979; 113-127
  • 33 Sunami K, Nakamura T, Ozawa Y, Kubota M, Namba H, Yamaura A. Hypermetabolic state following experimental head injury. Neurosurg Rev 12 (Suppl. 01) 1989; 400-411
  • 34 Samii A., Lee S.M., Hovda D.A.. Delayed increases in glucose utilization following cortical impact injury. Society for Neuroscience 24 1998; 738 Abstract
  • 35 Ackermann RF, Lear JL. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose. J Cereb Blood Flow Metab 09 1989; 774-785
  • 36 Lear JL, Ackermann RF. Why the deoxyglucose method has proven so useful in cerebral activation studies: the unappreciated prevalence of stimulation-induced glycolysis. J Cereb Blood Flow Metab 09 1989; 911-913
  • 37 Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674 1995; 196-204
  • 38 Biros MH, Dimlich RV. Brain lactate during partial global ischemia and reperfusion: effect of pretreatment with dichloroacetate in a rat model. Am J Emerg Med 05 1987; 271-277
  • 39 Richards TL, Keniry MA, Weinstein PR. et al Measurement of lactate accumulation by in vivo proton NMR spectroscopy during global cerebral ischemia in rats. Magn Reson Med 05 1987; 353-357
  • 40 Nilsson B, Ponten U. Exerimental head injury in the rat. Part 2: Regional brain energy metabolism in concussive trauma. J Neurosurg 47 1977; 252-261
  • 41 Yang MS, DeWitt DS, Becker DP, Hayes RL. Regional brain metabolite levels following mild experimental head injury in the cat. J Neurosurg 63 1985; 617-621
  • 42 Meyer JS, Kondo A, Nomura F, Sakamoto K, Teraura T. Cerebral hemodynamics and metabolism following experimental head injury. J Neurosurg 32 1970; 304-319
  • 43 Corbett R.J., Laptook A.R., Nunnally R.L., Hassan A., Jackson J.. Intracellular pH, lactate, and energy metabolism in neonatal brain during partial ischemia measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy. J Neurochem 51 1988; 1501-1509
  • 44 Nelson S.R., Lowry O.H., Passonneau J.V.. Head Injury. Caveness W.F., Walker A.E.. (eds.), 1966. JB Lippincott; Philadelphia: 444-4447
  • 45 Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L. Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15 1993; 306-312
  • 46 Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 91 1994; 10625-10629
  • 47 Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist. 10 2004; 53-62
  • 48 Prins ML, Lee SM, Fujima LS, Hovda DA. Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. J Neurochem 90 2004; 666-672
  • 49 Glenn TC, Kelly DF, Boscardin WJ. et al Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 23 2003; 1239-1250
  • 50 Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 93 2000; 815-820
  • 51 Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective Ntype calcium channel antagonist (SNX-111). Neurol Res 19 1997; 334-339
  • 52 Xiong Y, Peterson PL, Muizelaar JP, Lee CP. Amelioration of mitochondrial function by a novel antioxidant U-101033E following traumatic brain injury in rats. J Neurotrauma 14 1997; 907-917
  • 53 Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 15 1998; 531-544
  • 54 Buczek M, Alvarez J, Azhar J. et al Delayed changes in regional brain energy metabolism following cerebral concussion in rats. Metab Brain Dis 17 2002; 153-167
  • 55 Mautes AE, Thome D, Steudel WI, Nacimiento AC, Yang Y, Shohami E. Changes in regional energy metabolism after closed head injury in the rat. J Mol Neurosci 16 2001; 33-39
  • 56 Lee S.M., Wong M.D., Samii A., Hovda D.A.. Evidence for energy failure following irreversible traumatic brain injury. Ann N Y Acad Sci 893 1999; 337-340
  • 57 Becker D.P.. Central Nervous System Trauma Status Report. Becker D.P., Povlishock J.T.. (eds.), 1985. Byrd Press; Richmond: 229-242
  • 58 Racker E., Johnson J.H., Blackwell M.T.. The role of ATPase in glycolysis of Ehrlich ascites tumor cells. J Biol Chem 258 1983; 3702-3705
  • 59 Rose IA, Warms JV, O’Connell EL. Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun 15 1964; 33-37
  • 60 Gardiner M, Smith ML, Kagstrom E, Shohami E, Siesjo BK. Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. J Cereb Blood Flow Metab 02 1982; 429-438
  • 61 Kalimo H, Rehncrona S, Soderfeldt B, Olsson Y, Siesjo BK. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 01 1981; 313-327
  • 62 Myers RE. A unitary theory of causation of anoxic and hypoxic brain pathology. Adv Neurol 26 1979; 195-213
  • 63 Siemkowicz E, Hansen AJ. Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand 58 1978; 1-8
  • 64 Becker DP, Jenkins LW. The Physiological Basis of Modern Surgical Care. Miller TA, Rowlands B. (eds.), 1987. Mosby; St. Louis: 763-788
  • 65 DeSalles AA, Kontos HA, Ward JD, Marmarou A, Becker DP. Brain tissue pH in severely head-injured patients: a report of three cases. Neurosurgery 20 1987; 297-301
  • 66 Robertson CS, Grossman RG, Goodman JC, Narayan RK. The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J Neurosurg 67 1987; 361-368
  • 67 Hotson JR, Sypert GW, Ward Jr AA. Extracellular potassium concentration changes during propagated seizures in neocortex. Exp Neurol 38 1973; 20-26
  • 68 Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg 69 1988; 736-744
  • 69 Nilsson P, Hillered L, Ponten U, Ungerstedt U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10 1990; 631-637
  • 70 Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13 1993; 183-192
  • 71 Dietrich WD, Alonso O, Busto R. et al Posttraumatic cerebral ischemia after fluid percussion brain injury: an autoradiographic and histopathological study in rats. Neurosurgery 43 1998; 585-593
  • 72 Graham DI, Adams JH. Ischaemic brain damage in fatal head injuries. Lancet 01 1971; 265-266
  • 73 Dietrich WD, Alonso O, Busto R. et al Widespread hemodynamic depression and focal platelet accumulation after fluid percussion brain injury: a double-label autoradiographic study in rats. J Cereb Blood Flow Metab 16 1996; 481-489
  • 74 Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75 1991; 685-693
  • 75 Diringer MN, Videen TO, Yundt K. et al Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 96 2002; 103-108
  • 76 von Oettingen G, Bergholt B, Gyldensted C. et al Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50 2002; 781
  • 77 Marion DW, Darby J, Yonas H. Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg 74 1991; 407-414
  • 78 Coles JP, Fryer TD, Smielewski P. et al Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab 24 2004; 191
  • 79 Vespa P, Bergsneider M, Hattori N. et al Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25 2005; 763
  • 80 Muizelaar JP, Marmarou A, DeSalles AA. et al Cerebral blood flow and metabolism in severely head-injured children. Part 1: Relationship with GCS score, outcome, ICP, and PVI. J Neurosurg 71 1989; 63-71
  • 81 Chiron C, Raynaud C, Maziere B. et al Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33 1992; 696-703
  • 82 Zwienenberg M, Muizelaar JP. Severe pediatric head injury: the role of hyperemia revisited. J Neurotrauma 16 1999; 937-943
  • 83 Suzuki K. The changes in regional cerebral blood flow with advancing age in normal children. Nagoya Med J 34 1990; 159-170
  • 84 Adelson PD, Clyde B, Kochanek PM, Wisniewski SR, Marion DW, Yonas H. Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 26 1997; 200-207
  • 85 Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA. Cerebral blood flow and metabolism in children with severe head injury. Part 1: Relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58 1995; 145-152
  • 86 Kelly DF, Kordestani RK, Martin NA. et al Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg 85 1996; 762-771
  • 87 Vavilala MS, Lee LA, Boddu K. et al Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 05 2004; 257-263
  • 88 Bullock R, Zauner A, Woodward JJ. et al Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89 1998; 507-518
  • 89 Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73 1990; 889-900
  • 90 Takahashi H, Manaka S, Sano K. Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg 55 1981; 708-717
  • 91 Young W, Yen V, Blight A. Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Res 253 1982; 105-113
  • 92 Hubschmann OR, Kornhauser D. Effects of intraparenchymal hemorrhage on extracellular cortical potassium in experimental head trauma. J Neurosurg 59 1983; 289-293
  • 93 Julian F, Goldman D. The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol 46 1962; 297
  • 94 Ballanyi K, Grafe P, ten Bruggencate G. Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382 1987; 159-174
  • 95 Kuffler SW. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci. 168 1967; 1-21
  • 96 Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?. Science 237 1987; 896-898
  • 97 Moody WJ, Futamachi KJ, Prince DA. Extracellular potassium activity during epileptogenesis. Exp Neurol. 42 1974; 248-263
  • 98 Sypert GW, Ward Jr AA. Changes in extracellular potassium activity during neocortical propagated seizures. Exp Neurol. 45 1974; 19-41
  • 99 Astrup J, Rehncrona S, Siesjo BK. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate. Brain Res 199 1980; 161-174
  • 100 Hansen AJ. Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia. Acta Physiol Scand 99 1977; 412-420
  • 101 Hansen AJ. The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol Scand 102 1978; 324-329
  • 102 Heinemann U, Lux HD. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120 1977; 231-249
  • 103 D'Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D. Impaired K(+) homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19 1999; 8152-8162
  • 104 Fineman I, Hovda DA, Smith M, Yoshino A, Becker DP. Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res 624 1993; 94-102
  • 105 Nadler V, Biegon A, Beit-Yannai E, Adamchik J, Shohami E. 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res 685 1995; 1-11
  • 106 Nilsson P, Laursen H, Hillered L, Hansen AJ. Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channels. J Cereb Blood Flow Metab 16 1996; 262-270
  • 107 Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 18 2001; 141-162
  • 108 Verity MA. Ca(2+)-dependent processes as mediators of neurotoxicity. Neurotoxicology. 13 1992; 139-147
  • 109 Tymianski M, Tator CH. Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38 1996; 1176-1195
  • 110 Farooqui AA, Horrocks LA. Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res Brain Res Rev 16 1991; 171-191
  • 111 Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 14 1997; 121-134
  • 112 Roberts-Lewis JM, Marcy VR, Zhao Y, Vaught JL, Siman R, Lewis ME. Aurintricarboxylic acid protects hippocampal neurons from NMDA- and ischemia-induced toxicity in vivo. J Neurochem 61 1993; 378-381
  • 113 Carter CJ, Noel F, Scatton B. Ionic mechanisms implicated in the stimulation of cerebellar cyclic GMP levels by N-methyl-D-aspartate. J Neurochem 49 1987; 195-200
  • 114 Schmidley JW. Free radicals in central nervous system ischemia. Stroke 21 1990; 1086-1090
  • 115 Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 77 1992; 337-354
  • 116 Bignami A, Clark K. Non-phosphorylated and phosphorylated neurofilaments in hypothyroid rat cerebellum. Brain Res 409 1987; 143-145
  • 117 Iwasaki Y, Yamamoto H, Iizuka H, Yamamoto T, Konno H. Suppression of neurofilament degradation by protease inhibitors in experimental spinal cord injury. Brain Res 406 1987; 99-104
  • 118 Morgan JI, Curran T. Role of ion flux in the control of c-fos expression. Nature 322 1986; 552-555
  • 119 Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14 1997; 23-34
  • 120 Heath DL, Vink R. Traumatic brain axonal injury produces sustained decline in intracellular free magnesium concentration. Brain Res 738 1996; 150-153
  • 121 Vink R, McIntosh TK, Demediuk P, Faden AI. Decrease in total and free magnesium concentration following traumatic brain injury in rats. Biochem Biophys Res Commun 149 1987; 594-599
  • 122 Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma. J Biol Chem 263 1988; 757-761
  • 123 Memon ZI, Altura BT, Benjamin JL. et al Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest 55 1995; 671
  • 124 Binet A, Volfin P. Regulation by Mg2+ and Ca2+ of mitochondrial membrane integrity: study of the effects of a cytosolic molecule and Ca2+ antagonists. Arch Biochem Biophys 170 1975; 576-586
  • 125 Ebel H, Gunther T. Magnesium metabolism: a review. J Clin Chem Clin Biochem 18 1980; 257-270
  • 126 Bara M., Guiet-Bara A., Durlach J.. Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes Res 06 1993; 167-177
  • 127 Emerson CS, Vink R. Increased mortality in female rats after brain trauma is associated with lower free Mg2+. Neuroreport. 03 1992; 957-960
  • 128 Heath DL, Vink R. Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotrauma 15 1998; 183-189
  • 129 McIntosh TK, Faden AI, Yamakami I, Vink R. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J Neurotrauma 05 1988; 17-31
  • 130 DeSalles AA, Kontos HA, Becker DP. et al Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg 65 1986; 615-624
  • 131 Guerrero JL, Thurman DJ, Sniezek JE. Emergency department visits associated with traumatic brain injury: United States, 1995-1996. Brain Inj 14 2000; 181-186
  • 132 Kury G, Weiner J, Duval JV. Multiple self-inflicted gunshot wounds to the head: report of a case and review of the literature. Am J Forensic Med Pathol 21 2000; 32-35
  • 133 MacKenzie EJ, McCarthy ML, Ditunno JF. et al Using the SF-36 for characterizing outcome after multiple trauma involving head injury. J Trauma 52 2002; 527-534
  • 134 Giza CC, Hovda DA. The neurometabolic cascade of concussion. Journal of Athletic Training 36 2001; 228-235