Homeopathy 2007; 96(03): 220-226
DOI: 10.1016/j.homp.2007.05.005
Copyright © The Faculty of Homeopathy 2007

The nature of the active ingredient in ultramolecular dilutions

Otto Weingärtner

Subject Editor:
Further Information

Publication History

Received08 March 2007
revised14 May 2007

Publication Date:
13 December 2017 (online)


This paper discusses the nature of the active ingredient of homeopathic ultramolecular dilutions in terms of quantitative physics.

First, the problem of the nature of an active ingredient in ultramolecular dilutions is analysed leading to the recognition of the necessity of characterizing the active ingredient as a non-local quality.

Second, non-locality in quantum mechanics, which is used as a paradigm, is formally presented.

Third, a generalization of quantum mechanics is considered, focussing on the consequences of weakening of the axioms.

The formal treatment leads to the possible extension of the validity of quantum theory to macroscopic or even non-physical systems under certain circumstances with a while maintaining non-local behaviour. With respect to the survival of entanglement in such non-quantum systems a strong relationship between homeopathy and non-local behaviour can be envisaged. I describe how several authors apply this relationship. In conclusion, the paper reviews how quantum mechanics is closely related to information theory but why weak quantum theory and homeopathy have not hitherto been related in the same way.

  • References

  • 1 Fröhlich H, Kremer F (eds). Coherent Excitations in Biological Systems. Berlin, Heidelberg, New York: Springer, 1983.
  • 2 Weingärtner O. Homöopathische Potenzen. Berlin, Heidelberg, New York: Springer; 1992.
  • 3 Weingärtner O. Kernresonanz-Spektroskopie in der Homöopathieforschung. Essen: KVC-Verlag; 2002.
  • 4 Demangeat J.L., Gries P., Poitevin B. et al. Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica–lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 2004; 26: 465-481.
  • 5 Weingärtner O. Über die wissenschaftliche Bearbeitbarkeit der Identifikation eines ‘arzneilichen Gehalts’ von Hochpotenzen. Forsch Komplementärmed Klass Naturheilk 2002; 9: 229-233.
  • 6 Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press; 2000.
  • 7 Williams C.P., Clearwater S.H. Explorations in Quantum Computing. New York: Springer; 1998.
  • 8 Sheldrake R. The Presence of the Past. New York: Times Book; 1988.
  • 9 Bjorken J.D., Drell S.D. Relativistic Quantum Fields. New York: McGraw-Hill Book Company; 1965.
  • 10 Einstein A., Podolsky B., Rosen N. Can quantum–mechanical description of physical reality be considered complete?. Phys Rev 1935; 47: 777-780.
  • 11 Bell J.S. On the Einstein Podolsky Rosen paradox. Physics 1964; 1: 195-200.
  • 12 Aspect A., Grangier P., Roger G. Experimental realization of Einstein–Podolsky–Rosen–Bohm–Gedanken experiment: a new violation of Bell's inequalities. Phys Rev Lett 1982; 48: 91-94.
  • 13 Atmanspacher H., Römer H., Walach H. Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 2002; 32: 379-406.
  • 14 Römer H. Weak Quantum Theory and the Emergence of Time, 2004, arXiv:quant-ph/0402011 v1, 2 February 2004.
  • 15 Walach H. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory. Forsch Komplementärmed Klass Naturheilk 2003; 10: 192-200.
  • 16 Milgrom L. Patient-practitioner-remedy (PPR) entanglement. Part 1: a qualitative, non-local metaphor for homeopathy based on quantum theory. Homeopathy 2002; 91: 239-248.
  • 17 Weingärtner O. What is the therapeutically active ingredient of homeopathic potencies?. Homeopathy 2003; 92: 145-151.