Homeopathy 2013; 102(02): 87-105
DOI: 10.1016/j.homp.2013.01.001
Original Paper
Copyright © The Faculty of Homeopathy 2013

Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton NMR relaxation

Jean-Louis Demangeat

Subject Editor:
Further Information

Publication History

Received13 July 2012
revised07 November 2012

accepted11 January 2013

Publication Date:
27 December 2017 (online)

Background: Proton Nuclear Magnetic Resonance (NMR) relaxation times T1, T2, T1/T2 are sensitive to motion and organization of water molecules. Especially, increase in T1/T2 reflects a higher degree of structuring. My purpose was to look at physical changes in water in ultrahigh aqueous dilutions.

Methods: Samples were prepared by iterative centesimal (c) dilution with vigorous agitation, ranging between 3c and 24c (Avogadro limit 12c). Solutes were silica–lactose, histamine, manganese–lactose. Solvents were water, NaCl 0.15 M or LiCl 0.15 M. Solvents underwent strictly similar, simultaneous dilution/agitation, for each level of dilution, as controls. NMR relaxation was studied within 0.02–20 MHz.

Results: No changes were observed in controls. Increasing T1 and T1/T2 were found in dilutions, which persisted beyond 9c (manganese–lactose), 10c (histamine) and 12c (silica–lactose). For silica–lactose in LiCl, continuous decrease in T2 with increase in T1/T2 within the 12c–24c range indicated growing structuring of water despite absence of the initial solute. All changes vanished after heating/cooling. These findings were interpreted in terms of nanosized (>4-nm) supramolecular structures involving water, nanobubbles and ions, if any. Additional study of low dilutions of silica–lactose revealed increased T2 and decreased T1/T2 compared to solvent, within the 10−3–10−6 range, reflecting transient solvent destructuring. This could explain findings at high dilution.

Conclusion: Proton NMR relaxation demonstrated modifications of the solvent throughout the low to ultramolecular range of dilution. The findings suggested the existence of superstructures that originate stereospecifically around the solute after an initial destructuring of the solvent, developing more upon dilution and persisting beyond 12c.

  • References

  • 1 The memory of water. Special issue. Homeopathy 2007; 96: 141-226.
  • 2 Barnard G.P., Stephenson J.H. Fresh evidence for a biophysical field. J Am Inst Homeopath 1969; 62: 75-85.
  • 3 Lasne Y., Duplan J.C., Mallet J.J. Mise en évidence de signaux physiques émanant de solutions diluées-dynamisées ou homéopathiques. In: CEIA (ed). 2ème Bull Medical Telematic System. 1985. Lacenas, France.
  • 4 Lasne Y., Duplan J.C., Fenet B., Guérin A. Contribution à l’approche scientifique de la doctrine homéopathique. De Natura Rerum 1989; 3: 38-43.
  • 5 Conte R.R., Berliocchi H., Lasne Y., Vernot G. (eds). Theory of High Dilutions and Experimental Aspects. Paris, Polytechnica. 1996. Huddersfield: Dynsol Ltd.;
  • 6 Sukul A., Sarkar P., Sinhababu S.P., Sukul N.C. Altered solution structure of alcoholic medium of potentized Nux Vomica underlines its antialcoholic effect. Br Hom J 2000; 89: 73-77.
  • 7 Aabel S., Fossheim S., Rise F. Nuclear magnetic resonance studies of homeopathic solutions. Br Hom J 2001; 90: 14-20.
  • 8 Milgrom L.R., King K.R., Lee J., Pinkus A.S. On the investigation of homeopathic potencies using low resolution NMR T2 relaxation times: an experimental and critical survey of the work of Roland Conte et al. Br Hom J 2001; 90: 5-13.
  • 9 Tiezzi E. NMR evidence of a supramolecular structure of water. Ann Chim 2003; 93: 471-476.
  • 10 Baumgartner S., Wolf M., Skrabal P. et al. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate. Naturwissenschaften 2009; 96: 1079-1089.
  • 11 Tiezzi E., Catalucci M., Marchettini N. The supramolecular structure of water: NMR studies. Int J Design Nature Ecodynam 2010; 5: 10-20.
  • 12 Cucherat M., Haugh M.C., Gooch M., Boissel J.P. Evidence of clinical efficacy of homeopathy. Eur J Clin Pharmacol 2000; 56: 27-33.
  • 13 Becker-Witt C., Weishuhn T.E.R., Lüdtke R., Willich S.N. Quality assessment of physical research in homeopathy. J Altern Complement Med 2003; 9: 113-132.
  • 14 Witt C.M., Bluth M., Albrecht H., Weishuhn T.E.R., Baumgartner S., Willich S.N. The in vitro evidence for an effect of high homeopathic potencies – a systematic review of the literature. Complement Ther Med 2007; 15: 128-138.
  • 15 Clausen J., Van Wijk R., Albrecht H. Review of the use of high potencies in basic research on homeopathy. Homeopathy 2011; 100: 288-292.
  • 16 Demangeat J.L., Poitevin B. Guest editorial. Nuclear magnetic resonance: let's consolidate the ground before getting excited!. Br Hom J 2001; 90: 2-4.
  • 17 Demangeat J.L., Demangeat C., Gries P., Poitevin B., Constantinesco A. Modifications des temps de relaxation RMN à 4 MHz des protons du solvant dans les très hautes dilutions salines de silice-lactose. J Med Nucl Biophys 1992; 16: 135-145.
  • 18 Demangeat J.L., Gries P., Poitevin B. Modification of 4 MHz water proton relaxation times in very high diluted aqueous solutions. In: Bastide M. (ed). Signals and Images. 1997. Dordrecht: Kluwer Academic Publishers; pp. 95–110.
  • 19 Demangeat J.L., Gries P., Poitevin B. et al. Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 2004; 26: 465-481.
  • 20 Demangeat J.L. NMR water proton relaxation in unheated and heated ultrahigh dilutions of histamine: evidence for an air-dependent supramolecular organization of water. J Mol Liq 2009; 144: 32-39.
  • 21 Demangeat J.L. NMR relaxation evidence for solute-induced nanosized superstructures in ultramolecular aqueous dilutions of silica-lactose. J Mol Liq 2010; 155: 71-79.
  • 22 Bloembergen N., Purcell E.M., Pound R.V. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948; 73: 679-712.
  • 23 Davenas E., Poitevin B., Benveniste J. Effect on mouse peritoneal macrophages of orally administered very high dilutions of silica. Eur J Pharmacol 1987; 135: 313-319.
  • 24 Sainte-Laudy J., Belon P. Inhibition of human basophil activation by high dilutions of histamine. Agents Actions 1993; 38: C245-C247.
  • 25 Glasel J.A. Nuclear magnetic resonance studies on water and ice. In: Franks F. (eds). Water. A Comprehensive Treatise. The Physics and Physical Chemistry of Water. 1972. New York: Plenum Press Publisher; pp. 215–254.
  • 26 Kondrachuk A.V., Krasnogolovets V.V., Ovcharenko A.I., Chesnokov E.D. Determination of water structuring by the pulsed NMR method. Sov J Chem Phys 1994; 12: 1485-1492.
  • 27 Bunkin N.F., Lobeyev A.V., Vinogradova O.I., Movchan T.G., Kuklin A.I. Presence of submicroscopic air bubbles in water. Small-angle neutron scattering experiment. JETP Lett 1995; 62: 685-688.
  • 28 Sedlak M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization. J Phys Chem 2006; B110: 4329-4338.
  • 29 Sedlak M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: II. Kinetics of the formation and long-time stability. J Phys Chem 2006; B110: 4339-4345.
  • 30 Jin F., Ye J., Hong L., Lam H., Wu C. Slow relaxation mode in mixtures of water and organic molecules: supramolecular structures or nanobubbles?. J Phys Chem 2007; B111: 2255-2261.
  • 31 Bunkin N.F., Bunkin F.W. Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions. Sov Phys JETP 1992; 74: 271-278.
  • 32 Hofmeier U., Yaminsky V.V., Christenson H.K. Observations of solute effects on bubble formation. J Colloid Interface Sci 1995; 174: 199-210.
  • 33 Lessard R.R., Zieminski S.A. Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind Eng Chem Fund 1971; 10: 260-269.
  • 34 Craig V.S.J., Ninham B.W., Paschley R.M. The effect of electrolytes on bubble coalescence in water. J Phys Chem 1993; 97: 10192-10197.
  • 35 Craig V.S.J. Bubble coalescence and specific-ion effects. Curr Opin Coll Int Sci 2004; 9: 178-184.
  • 36 Marcus Y. Effects of ions on the structure of water: structure making and breaking. Chem Rev 2009; 109: 1346-1370.
  • 37 Ohtaki H., Radnaï T. Structure and dynamics of hydrated ions. Chem Rev 1993; 93: 1157-1204.
  • 38 Chizhik V.I. NMR relaxation and microstructure of aqueous electrolyte solutions. Mol Phys 1997; 90: 653-659.
  • 39 Suresh S.J., Kapoor K., Talwar S., Rastogi A. Internal structure of water around cations. J Mol Liq 2012; 174: 135-142.
  • 40 Marcus Y. On water structure in concentrated salt solutions. J Solution Chem 2009; 38: 513-516.
  • 41 Engel G., Hertz H.G. On the negative hydration. A nuclear magnetic relaxation study. Ber Bunsenges Phys Chem 1968; 72: 808-834.
  • 42 Shibkov A.A., Golovin Y.I., Zheltov M.A., Korolev A.A., Leonov A.A. In situ monitoring of growth of ice from supercooled water by a new electromagnetic method. J Crystal Growth 2002; 236: 434-440.
  • 43 Lo S.-Y., Li W. Onsager's formula, conductivity, and possible new phase transition. Mod Phys Lett 1999; B13: 885-893.
  • 44 Higo J., Sasai M., Shirai H., Nakamura H., Kugimiya T. Large vortex-like structure of dipole field in computer models of liquid water and dipole-bridge between biomolecules. PNAS 2001; 98: 5961-5964.
  • 45 Shelton D.P. Collective molecular rotation in water and other simple liquids. Chem Phys Lett 2000; 325: 513-516.
  • 46 Speedy R.J. Self-replicating structures in water. J Phys Chem 1984; 88: 3364-3373.
  • 47 Del Guidice E., Preparata G., Vitiello G. Water as a free electric dipole laser. Phys Rev Lett 1988; 61: 1085-1088.
  • 48 Lobyshev V.I., Shikhlinskaya R.E., Ryzhikov B.D. Experimental evidence for intrinsic luminescence of water. J Mol Liq 1999; 82: 73-81.
  • 49 Dillon R.S., Dougherty R.C. NMR evidence of weak continuous transitions in water and aqueous electrolyte solutions. J Phys Chem A 2003; 107: 10217-10220.
  • 50 Aïssa J., Litime M.H., Attias E., Benveniste J. Molecular signaling at high dilution or by means of electronic circuitry. J Immunol 1993; 150: A146.
  • 51 Benveniste J., Aïssa J., Litime M.H., Tsangaris G.T., Thomas Y. Transfer of the molecular signal by electronic amplification. FASEB J 1994; 8: A398.
  • 52 Endler P.C., Pongratz W., Smith C.W., Schulte J. Non-molecular information transfer from thyroxine to frogs with regard to homeopathic toxicology. Vet Hum Toxicol 1995; 37: 259-260.
  • 53 Senekowitsch F., Endler P.C., Pongratz W., Smith C.W. Hormone effects by CD record/replay. FASEB J 1995; 9: A12161.
  • 54 Jonas W.B., Ives J.A., Rollwagen F. et al. Can specific biological signals be digitized?. FASEB J 2006; 20: 23-28.
  • 55 Montagnier L., Aïssa J., Ferris S., Montagnier J.L., Lavallée C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci Comput Life Sci 2009; 1: 81-90.
  • 56 Calabrese E.J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose-response model in the toxicological sciences. Environ Pollut 2005; 138: 378-411.
  • 57 Brovchenko I., Oleinikova A. Which properties of a spanning network of hydration water enable biological function?. Chem Phys Chem 2008; 9: 2695-2702.