Homeopathy 2017; 106(01): 18-26
DOI: 10.1016/j.homp.2016.12.002
Original Paper
Copyright © The Faculty of Homeopathy 2016

Homeopathy outperforms antibiotics treatment in juvenile scallop Argopecten ventricosus: effects on growth, survival, and immune response

José Manuel Mazón-Suástegui
1   Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
Milagro García-Bernal
3   Centro de Bioactivos Químicos, Universidad Central de Las Villas, Santa Clara, Villa Clara, 54830, Cuba
Pedro Enrique Saucedo
1   Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
Ángel Campa-Córdova
1   Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
Fernando Abasolo-Pacheco
1   Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
2   Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo. Los Ríos, EC 120501, Ecuador
› Institutsangaben
Weitere Informationen


Received 14. Mai 2015
revised 22. Februar 2016

accepted 05. Dezember 2016

28. Dezember 2017 (online)

Background: Mortality from vibriosis in mollusk production is attributed to pathogenic bacteria, particularly Vibrio alginolyticus. Use of increasingly potent antibiotics has led to bacterial resistance and increased pathogenicity. Alternatives in sanitation, safety, and environmental sustainability are currently under analysis. To-date, homeopathy has been investigated in aquaculture of freshwater fish, but not in marine mollusks. The effect of the homeopathic complexes in the growth, survival, and immune response of the Catarina scallop Argopecten ventricosus were assessed.

Methods: A bioassay to assess the potential of homeopathy in improving cultivation of juvenile A. ventricosus was conducted for 21 days, with a final challenge of 120 h with V. alginolyticus. The experimental design included two homeopathic formulas The homeopathic complex Passival, consisting of Passiflora incarnata 30 CH, Valeriana officinalis 30 CH, Ignatia amara 30 CH and Zincum valerianicum 30 CH plus Phosphoricum acid 30 CH (treatment TH1) or Silicea terra 30 CH (TH2), two antibiotics (ampicillin = AMP, oxytetracycline = OXY), and two reference treatments (without homeopathic or antibiotic treatment = CTRL, ethanol 30° GL = ETH). Additionally, a negative control CTRL− (untreated/uninfected) is included in the challenge test. Juvenile scallops (4.14 ± 0.06 mm, 13.33 mg wet weight) were cultivated in 4 L tanks provided with aerated, filtered (1 μm), and UV-sterilized seawater that was changed every third day. They were fed a blend of the microalgae Isochrysis galbana and Chaetoceros calcitrans (150,000 cells mL−1 twice a day). All treatments were directly added to the tank water and then 500 mL challenge units were inoculated with 1 × 107 CFU/mL (LD50) of V. alginolyticus.

Results: Juveniles grew significantly larger and faster in height and weight with TH2 compared to the ETH and CTRL (P < 0.05, ANOVA). Higher concentrations of proteins occurred in scallops exposed to TH2 (160.57 ± 7.79 mg g−1), compared to other treatments and reference treatments. Higher survival rate during the challenge bioassay occurred with TH1 (85%), compared to AMP (53%), OXY (30%), and CTRL (0%), and superoxide dismutase (P < 0.05) was significantly higher in scallops treated with TH1, compared to other treatments and reference treatments.

Conclusions: Homeopathic treatments improved growth and survival and enhanced survival against V. alginolyticus in juvenile A. ventricosus. This suggests that homeopathy is a viable treatment for this mollusk to reduce use of antibiotics in scallops and its progressive increase in pathogenicity in mollusk hatcheries.

  • References

  • 1 Keen A.M. (ed). Sea Shells of Tropical West America. Stanford, CA: Stanford Univ. Press; 1971.
  • 2 Mazón-Suástegui J.M. Biología y cultivo de la almeja catarina Argopecten ventricosus (Sowerby II, 1842). [Doctoral thesis] Barcelona, Spain: Universitat de Barcelona; 2005.
  • 3 FAO. The State of World Fisheries and Aquaculture (SOFIA). Fisheries and Aquaculture Department. http://www.fao.org/3/a-i3720e/index.html [Retrieved 2 February 2015].
  • 4 Sainz J.C., Maeda-Martinez A.N., Ascencio F. Experimental vibriosis induction with Vibrio alginolyticus of larvae of the catarina scallop (Argopecten ventricosus = circularis) (Sowerby II, 1842). Microb Ecol 1998; 35: 188-192.
  • 5 Luna-González A., Maeda-Martínez A.N., Vargas-Albores F., Ascencio-Valle F., Robles-Mungaray M. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs. Fish Shellfish Immun 2003; 15: 275-282.
  • 6 Campa-Córdova A.I., Luna-González A., Zarain-Herzberg M., Cáceres-Martínez C.J. Prophylactic use of antibiotics in larval culture of Argopecten ventricosus (Sowerby, 1835). J Shellfish Res 2005; 24: 923-930.
  • 7 Abasolo-Pacheco F., Mazón-Suástegui J.M., Saucedo P.E. Response and condition of larvae of the scallops Nodipecten subnodosus and Argopecten ventricosus reared at the hatchery with different seawater sources. Aquaculture 2009; 296: 255-262.
  • 8 Mazón-Suástegui J.M., Maeda-Martínez A.N., Robles-Mungaray M. et al. Avances en la producción de juveniles de Nodipecten spp. In: Maeda-Martínez A.N., Lodeiros-Seijo C. (eds). Biología y Cultivo de los Moluscos Pectínidos del Género Nodipecten. Mexico City: Limusa; 2011: 275-311.
  • 9 Uriarte I.G., Rupp G., Abarca A. Producción de juveniles de pectínidos iberoamericanos bajo condiciones controladas. In: Los Moluscos Pectínidos de Iberoamérica Ciencia y Acuicultura. Mexico City: Limusa; 2002: 147-172.
  • 10 Barbosa V., Luna-González A., Aguirre-Guzmán G., Riquelme C., Ascencio-Valle F. Enfermedades microbianas de pectínidos cultivados en Iberoamérica. In: Los Moluscos Pectínidos de Iberoamérica Ciencia y Acuicultura. Mexico City: Limusa; 2002: 325-342.
  • 11 Figueras A., Novoa B. (eds). Enfermedades de moluscos bivalvos de interés en Acuicultura. Madrid: Editorial Paraninfo; 2011: 93-134.
  • 12 Sainz-Hernández J.C., Maeda-Martínez A.N. Sources of Vibrio bacteria in mollusc hatcheries and control methods: a case study. Aquac Res 2005; 36: 1611-1618.
  • 13 Leyton Y., Riquelme C. Vibrios en los sistemas marinos costeros. Rev Biol Mar Oceanogr 2008; 43: 441-456.
  • 14 Luna-González A., Barbosa V., Mendes-De-Bem M. Inmunología y patología microbiana de moluscos bivalvos con énfasis en especies del género Nodipecten spp. In: Maeda-Martínez A.N., Lodeiros-Seijo C. (eds). Biología y cultivo de los moluscos pectínidos del género Nodipecten. Mexico City: Limusa; 2011: 203-225.
  • 15 Lawrence R., Jeyakumar E. Antimicrobial resistance: a cause for global concern. BMC Proc 2013; 7: 1-14.
  • 16 Romero J., Feijoó C.G., Navarrete P. Antibiotics in aquaculture—use, abuse and alternatives. In: Carvalho E.D., Silva David G., da Silva R.J. (eds). Health and Environment in Aquaculture. Croatia: InTech Europe; 2012: 159-198.
  • 17 Viksveen P. Antibiotics and the development of resistant microorganisms. Can homeopathy be an alternative?. Homeopathy 2003; 92: 99-107.
  • 18 Vockeroth W.G. Veterinary homeopathy: an overview. Can Vet J 1999; 40: 592.
  • 19 Catto J.B., Bianchin I., Feijo G.L.D., Araujo F.R., Ramos C.A.D.N., Castelao A.B.C. Weight gain and control of endo-and ectoparasites of beef heifers treated with allopathic, herbal and homeopathic drugs. Rev Bras Parasitol Vet 2013; 22: 502-510.
  • 20 da Rocha R.A., Pacheco R.D.L., Amarante A.F. Efficacy of homeopathic treatment against natural infection of sheep by gastrointestinal nematodes. Rev Bras Parasitol 2006; 15: 23-27.
  • 21 Zacharias F., Guimarães J.E., Araújo R.R. et al. Effect of homeopathic medicines on helminth parasitism and resistance of Haemonchus contortus infected sheep. Homeopathy 2008; 97: 145-151.
  • 22 Molento M.B., Veríssimo C.J., Amarante A.T. et al. Alternative techniques for the control of gastrointestinal nematodes in small ruminants. Arq Inst Biol 2013; 80: 253-263.
  • 23 del Carmen M.R.R., Manuel C.P.M. Efecto comparativo de la calcarea carbónica, la Silicea terra y la avoparcina como promotores del crecimiento en pollos de engorda. [Lic. thesis]. Guadalajara, Mexico: Universidad de Guadalajara; 1994.
  • 24 Madan E. El uso de Baryta Carbónica y Silicea Terra como promotor del crecimiento en la especie porcina. La Habana: V Congreso Nacional de Ciencias Veterinarias. Palacio de las Convenciones; 2000: 211-212.
  • 25 Coelho C.D.P., Vuaden E.R., Soto F.R.M. et al. Evaluation of homeopathic treatment of Escherichia coli infected swine with identification of virulence factors involved: pilot study. Int J High Dilution Res 2014; 13: 197-206.
  • 26 Dodero J.A., Espíndola G.B., Ruipérez F.H. Investigación en conejos con productos homeopáticos. Lagomorpha 1998; 97: 29-34.
  • 27 Barbour E.K., Sagherian V., Talhouk S. et al. Evaluation of homeopathy in broiler chickens exposed to live viral vaccines and administered Calendula officinalis extract. Med Sci Monit 2004; 10: 281-285.
  • 28 García L.R.G., Villegas A.B. Implicaciones médicas de las investigaciones sobre medicamentos homeopáticos realizadas en la Estación Territorial de Investigaciones de la Caña de Azúcar Villa Clara-Cienfuegos. Rev Med Homeopat 2014; 7: 55-57.
  • 29 Valentim-Zabott M., Vargas L., Ribeiro R.P.R. et al. Effects of a homeopathic complex in Nile tilapia (Oreochromis niloticus) on performance, sexual proportion and histology. Homeopathy 2008; 97: 190-195.
  • 30 Siena C.E., Natali M.R.M., Braccini G.L., de Oliveira A.C., Ribeiro R.P., Vargas L. Efeito do núcleo homeopático Homeopatila 100 ® na eficiência produtiva em alevinos revertidos de tilápia do Nilo (Oreochromis niloticus). Semin Ciênc Agrár 2010; 31: 985-994.
  • 31 Junior R.P., Vargas L., Valentim-Zabott M., Ribeiro R.P., Da Silva A.V., Otutumi L.K. Morphometry of white muscle fibers and performance of Nile tilapia (Oreochromis niloticus) fingerlings treated with methyltestosterone or a homeopathic complex. Homeopathy 2012; 101: 154-158.
  • 32 Braccini G.L., Marçal M.R., Ribeiro R.P. et al. Morpho-functional response of Nile tilapia (Oreochromis niloticus) to a homeopathic complex. Homeopathy 2013; 102: 233-241.
  • 33 Andretto A.P., Manfroi-Fuzinatto M., Braccini G.L. et al. Effect of a homeopathic complex on fatty acids in muscle and performance of the Nile tilapia (Oreochromis niloticus). Homeopathy 2014; 103: 178-185.
  • 34 Merlini L.S., Vargas L., Piau R., Pereira R., Merlini N.B. Effects of a homeopathic complex on the performance and cortisol levels in Nile tilapia (Oreochromis niloticus). Homeopathy 2014; 103: 139-142.
  • 35 de Oliveira F.K.C., Aparecido J.P., Sampaio D.A.J. Physiological responses of pacu (Piaractus mesopotamicus) treated with homeopathic product and submitted to transport stress. Homeopathy 2013; 102: 268-273.
  • 36 Sudha C. Study on induced breeding in ornamental fish, Poecilia sphenops . Eur J Exp Biol 2012; 2: 1250-1255.
  • 37 Sudha C., Gokula V. Reproductive response of the guppy fish Poecilia reticulata for homeopathic medicine, Natrum muriaticum . Biolife 2014; 2: 932-935.
  • 38 Guedes J.R.P., Ferreira C.M., Guimaraes H.M.B., Saldiva P.H.N., Capelozzi V.L. Homeopathically prepared dilution of Rana catesbiana thyroid glands modifies its rate of metamorphosis. Homeopathy 2004; 93: 132-137.
  • 39 Gastalho S., da Silva G., Ramos F. Uso de antibióticos em aquacultura e resistência bacteriana: impacto em saúde pública. Acta Farmacêutica Portuguesa 2014; 3: 29-45.
  • 40 Guillard R.R.L. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L., Chanley M.H. (eds). Culture of Marine Invertebrate Animals. New York: Plenum Press; 1975: 26-60.
  • 41 Similia. Distribuidora Homeopática Nacional (Farmacia Homeopática Nacional) y Propulsora de Homeopatía. http://www.similia.com.mx [Retrieved 19 February 2015].
  • 42 Aftabuddin S., Kader A., Kamal A.M., Zafar M. Present status on the use of antibiotics and chemicals in shrimp hatcheries and grow-out ponds and their environmental implications in Bangladesh. AACL Bioflux 2009; 2: 369-379.
  • 43 Abasolo-Pacheco F., Saucedo P.E., Mazón-Suástegui J.M. et al. Isolation and use of beneficial microbiota from the digestive tract of lions-paw scallop Nodipecten subnodosus and winged pearl oyster Pteria sterna in oyster aquaculture. Aquac Res 2015. http://dx.doi.org/10.1111/are.12754.
  • 44 Finney D.J. (ed). Probit Analysis. London: Cambridge University Press; 1971.
  • 45 International Business Machines Corp. (IBM). SPSS statistics. Ver. 20 para Mac, http://www14.software.ibm.com 2011
  • 46 Media Cybernetics. Image-pro plus 6.0. Silver Spring, MD: Media Cybernetics; 2006 http://www.mediacy.com/.
  • 47 Van Handel E. Estimation of glycogen in small amounts of tissue. Anal Biochem 1965; 11: 256-265.
  • 48 Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
  • 49 Bligh E.C., Dyer W.J. A rapid method of total lipid extraction and purification. Can J Biochem Phys 1959; 37: 911-917.
  • 50 Laboratorios médicor. http://www.medicor.com.mx/insomnio.html [Retrieved 19 February 2015].
  • 51 Farías A. Nutrición en moluscos pectínidos. In: Maeda-Martínez A.N. (ed). Los Moluscos Pectínidos de Iberoamérica: Ciencia y Acuicultura. Mexico City: Limusa; 2001: 89-104.
  • 52 Farías A. Uriarte I. Nutrición en larvicultura de pectínidos: Relevancia de proteínas y lípidos. In: Cruz-Suárez L.E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortés M.G., Simoes N. (eds). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 2002; 309-313. Cancún, Quintana Roo, Mexico.
  • 53 Uriarte I., Farías A. Effect of broodstock origin and postlarval diet on postlarval performance of the Chilean scallop Argopecten purpuratus . In: Lavens P., Roelants I. (eds). Larvi'95 – Fish and Shellfish Larviculture Symposium. Ghent, Belgium: European Aquaculture Society, Special Publication 24; 1995: 69-72.
  • 54 Boericke W. Homeopathic material medica. http://www.homeoint.org/books/boericmm/s/sil.htm [Retrieved 4 February 2015].
  • 55 Vishakan R., Balamurugan S., Maruthanayagam C. et al. Homeopathic induction of spawning in ornamental fish. In: Pandian T.J., Strüssmann C.A., Marian M.P. (eds). Fish Genetics and Aquaculture Biotechnology. Boca Raton, FL: CRC Press; 2005: 119-121.
  • 56 Allam B., Paillard C., Auffret M., Ford S.E. Effects of the pathogenic Vibrio tapetis on defense factors of susceptible and non-susceptible bivalve species: II. Cellular and biochemical changes following in vivo challenge. Fish Shellfish Immunol 2006; 20: 384-397.
  • 57 Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol R 2000; 64: 655-671.
  • 58 Knight-Jones T.J.D., Edmond K., Gubbins S., Paton D.J. Veterinary and human vaccine evaluation methods. Proc R Soc B 2014; 281: 28-39.
  • 59 Batra M. Homeopathy: the effective alternative to antibiotics. Townsend Lett 2013; 360: 51.
  • 60 Prieur D., Mvel G., Nicolas J.L., Plusquellec A., Vigneulle M. Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr Mar Biol Annu Rev 1990; 28: 277-352.
  • 61 Moriarty D.J.W. The role of microorganisms in aquaculture ponds. Aquaculture 1997; 151: 333-349.
  • 62 Campa-Córdova A.I., González-Ocampo H., Luna-González A., Mazón-Suástegui J.M., Ascencio F. Growth, survival, and superoxide dismutase activity in juvenile Crassostrea corteziensis (Hertlein, 1951) treated with probiotics. Hidrobiologica 2009; 19: 151-157.
  • 63 Wolowczuk I., Verwaerde C., Viltart O. et al. Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008. Article ID 639803.
  • 64 Ren L., Hemar Y., Perera C.O., Lewis G., Krissansen G.W., Buchanan P.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact Carbohydr Diet Fibre 2014; 3: 41-51.
  • 65 Miranda C.D., Rojas R., Abarca A., Hurtado L. Effect of florfenicol and oxytetracycline treatments on the intensive larval culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquac Res 2013; 45: 16-30.
  • 66 Campa-Córdova A.I., Luna-González A., Ascencio F., Cortes-Jacinto E., Cáceres-Martínez C.J. Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis . Aquaculture 2006; 260: 145-150.
  • 67 Li J., Xu Y., Jin L., Li X. Effects of a probiotic mixture (Bacillus subtilis YB-1 and Bacillus cereus YB-2) on disease resistance and non-specific immunity of sea cucumber, Apostichopus japonicus (Selenka). Aquac Res 2015; 46: 3008-3019.
  • 68 Song L., Wang L., Qiu L., Zhang H. Bivalve immunity. In: Söderhäll K. (ed). Invertebrate Immunity. New York: Springer; 2010: 44-65.
  • 69 Wang L.U., Chen J.C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immunol 2005; 18: 269-278.
  • 70 Hsieh T.J., Wang J.C., Hu C.Y., Li C.T., Kuo C.M., Hsieh S.L. Effects of Rutin from Toona sinensis on the immune and physiological responses of white shrimp (Litopenaeus vannamei) under Vibrio alginolyticus challenge. Fish Shellfish Immunol 2008; 25: 581-588.
  • 71 Labreuche Y., Lambert C., Soudant P., Boulo V., Huvet A., Nicolas J.L. Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32. Microb Infect 2006; 8: 2715-2724.
  • 72 Gagnaire B., Gay M., Huvet A., Daniel J.Y., Saulnier D., Renault T. Combination of a pesticide exposure and a bacterial challenge: in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg). Aquat Toxicol 2007; 84: 92-102.
  • 73 Camerlink I., Ellinger L., Bakker E.J., Lantinga E.A. Homeopathy as replacement to antibiotics in the case of Escherichia coli diarrhoea in neonatal piglets. Homeopathy 2010; 99: 57-62.
  • 74 Passeti T.A., Souza A.P.M., Beltrame R.L., Coelho C.P., Diniz S. Homeopathy: a possible weapon against multidrug-resistant bacteria to antibiotics. Int J High Dilution Res 2014; 13: 114-114.