Homeopathy 2003; 92(01): 30-34
DOI: 10.1054/homp.2002.0069
Education and Debate
Copyright © The Faculty of Homeopathy 2003

Mutual information and the homeopathic effect

R Waldo
J-L Torres

Subject Editor:
Further Information

Publication History

Received06 March 2002
revised17 June 2002

accepted15 July 2002

Publication Date:
27 December 2017 (online)


We explore the feasibility of using mutual information to characterize the homeopathic effect. This quantity measures the information gained about a signal at time (t + τ), from its value at an earlier time t; it quantifies the predictability of data. We illustrate our method with an analysis of the homeopathic effect of Strophantus hispidus on the cardiac rhythm of healthy human subjects, using data from a previous experiment. Our results allow an intuitively clear rendering and agree with the similitude principle applied to this case. They also show that the solvent has a significant effect on the signal; hence, it does not act as an ideal placebo and we discuss some therapeutic corollaries to this observation.

  • References

  • 1 Ruiz G, Torres J-L, Michel O, Navarro R. Homeopathic effect on heart rate variability. Br Hom J 1999; 88: 106-111
  • 2 Ruiz G, Torres J-L. Homeopathic effect on the sleep pattern of rats. Br Hom J 1997; 86: 201-206
  • 3 Ruiz G, Torres J-L. A possible characterization of the homeopathic effect. Br Hom J 1997; 86: 4-9
  • 4 Lathi BP. Random Signals and Communications Theory. Scranton: International Textbook Company; 1968
  • 5 Shannon CE, Weaver WW. The Mathematical Theory of Communication. Urbana: University. of Illionis Press; 1949
  • 6 Gallager RG. Information Theory and Reliable Communication. New York: Wiley; 1968
  • 7 Blahut RE. Principles and Practice of Information Theory. Reading: Addison-Wesley; 1991
  • 8 Fisher L. Probability and statistics. In: Pearson CE. (ed). Handbook of Applied Mathematics. 1974. New York: Van Nostrand Reinhold;
  • 9 Bergé P, Pomeau Y, Vidal C. Order within Chaos. New York: Wiley; 1984
  • 10 Abarbanel H DI. Analysis of Observed Chaotic Data. New York: Springer; 1996
  • 11 Jaynes ET, Gibbs v s. Boltzmann entropies. Am J Phys 1965; 33: 391-398
  • 12 Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986; 33: 1134-1140
  • 13 Korn GA, Korn TM. Mathematical Handbook for Scien-tists and Engineers. New York: Dover Publications; 2000
  • 14 Peng CK, Mietus J. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 1993; 70: 1343-1346
  • 15 Kaspar F, Schuster HG. Easily calculable measure for the com-plexity of spatiotemporal patterns. Phys Rev A 1987; 36: 842-848
  • 16 Stanley HE. Introduction to Phase Transitions and Critical Phenomena. New York: Oxford University Press; 1971
  • 17 Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics. New York: Wiley; 1975
  • 18 Vijnovsky V. Tratado de Materia Medica Homeopatica. Buenos Aires: Macagno, Landa&Cia; 1981
  • 19 Hahnemann, S, Organon of Medicine, Blame, Washington, Cooper Publishing, 1996
  • 20 Buldyrev SV, Goldberger AL, Havlin S, Peng CK, Stanley HE. Fractals in biology and medicine: from DNA to the heartbeat. In: Bunde A, Havlin S. (eds). Fractals in Science. 1994. Berlin: Springer;
  • 21 Harrington A. The Placebo Effect: An Interdisciplinary Exploration. Cambridge: Harvard University. Press; 1997
  • 22 Weihrauch TR. Placebo effect in clinical trials. Med Klin 1999; 44: 173-181
  • 23 McQuarrie DA. Statistical Mechanics. New York: Harper & Row; 1976
  • 24 Reif F. Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill; 1965
  • 25 Strogatz SH. Exploring complex networks. Nature 2001; 410: 268-276
  • 26 Torres J-L. Homeopathic effect: a network perspective. Br Hom J 2002; 91: 89-94