Rofo 2018; 190(06): 513-520
DOI: 10.1055/a-0595-7964
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Dynamic 4D-CT Angiography for Guiding Transarterial Chemoembolization: Impact on the Reduction of Contrast Material, Operator Radiation Exposure, Catheter Consumption, and Diagnostic Confidence

Dynamische 4D-CT-Angiografie zur Planung der transarteriellen Chemoembolisation: Einfluss auf die Kontrastmittelreduktion, die Strahlenexposition des Interventionalisten, den Katheterverbrauch und die Diagnosesicherheit
Moritz H. Albrecht
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Thomas J. Vogl
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Julian L. Wichmann
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Simon S. Martin
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Jan-Erik Scholtz
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Sebastian Fischer
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Renate M. Hammerstingl
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Marc Harth
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Nour-Eldin A. Nour-Eldin
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Axel Thalhammer
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Stephan Zangos
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Ralf W. Bauer
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
› Author Affiliations
Further Information

Publication History

23 January 2018

17 March 2018

Publication Date:
15 May 2018 (online)

 Widmung

This manuscript is dedicated to our mentor Professor Thomas J. Vogl on his 60th birthday. Dieses Manuskript ist unserem Mentor Professor Thomas J. Vogl zum 60. Geburtstag gewidmet.

Abstract

Purpose This study was carried out to investigate the impact of abdominal dynamic four-dimensional CT angiography (4D-CTA) for guiding transarterial chemoembolization (TACE) on the amount of contrast material used, operator radiation exposure, catheter consumption, and diagnostic confidence.

Materials and Methods Written consent was waived for this IRB-approved retrospective study. 29 patients (20 men; mean age: 65.7 ± 11.5 years) with malignant liver lesions underwent 4D-CTA, prior to initial TACE. Time-resolved volume-rendering technique (VRT), maximum-intensity projection (MIP), and multiplanar reconstruction (MPR) series were reconstructed, enabling a direct selective catheterization of the tumor-supplying artery without prior conventional digital subtraction angiography (DSA). 29 patients (16 men; mean age: 69.4 ± 13.9) who underwent traditional TACE served as the control group. The amount of administered contrast media, operator radiation exposure, and catheter consumption during TACE were compared. Two radiologists assessed diagnostic confidence in the exclusion of portal vein thrombosis.

Results 4D-CTA TACE resulted in a significant reduction in the amount of contrast media used, compared to traditional TACE (–61.0 ml/ –66.3 % intra-arterial, –12.8 ml/ –13.8 % overall; P < 0.001). The dose-area product indicating operator radiation exposure during intervention was reduced by 50.5 % (P < 0.001), and 0.7 fewer catheters on average were used (P = 0.063), while 4D-CTA data was available to guide TACE. Diagnostic confidence in the exclusion of portal vein thrombosis was significantly enhanced by 4D-CTA, compared to traditional DSA images (scores, 3.9 and 2.4, respectively; P < 0.001).

Conclusion Dynamic 4D-CTA enables TACE with a substantially reduced amount of contrast material, decreases operator radiation exposure, and increases diagnostic confidence in the exclusion of portal vein thrombosis.

Key points

  • 4D-CTA prior to TACE decreases the amount of utilized contrast material.

  • The intra-arterial fraction of contrast media can be reduced by two-thirds.

  • The risk of CIN may be decreased by means of 4D-CTA TACE.

  • Operator radiation exposure is lower using 4D-CTA for guiding TACE.

  • 4D-CTA portography allows for a higher diagnostic confidence than conventional DSA images.

Citation Format

  • Albrecht MH, Vogl TJ, Wichmann JL et al. Dynamic 4D-CT Angiography for Guiding Transarterial Chemoembolization: Impact on the Reduction of Contrast Material, Operator Radiation Exposure, Catheter Consumption, and Diagnostic Confidence. Fortschr Röntgenstr 2018; 190: 513 – 520

Zusammenfassung

Zielsetzung Ziel dieser Studie war die Analyse der Auswirkungen einer dynamischen vierdimensionalen CT-Angiografie (4D-CTA) für die Planung transarterieller Chemoembolisationen (TACE) im Hinblick auf Kontrastmittelverbrauch, Strahlenexposition für den Interventionalisten, Katheterverbrauch und diagnostische Sicherheit.

Material und Methoden Neunundzwanzig Patienten (20 Männer; mittleres Alter, 65,7 ± 11,5 Jahre) mit malignen Lebertumoren unterzogen sich einer 4D-CTA Untersuchung vor der ersten TACE. Zeitlich aufgelöste Volumenrekonstruktionen (VRT), Maximumintensitätsprojektionen (MIP) und multiplanare Reformatierungen (MPR) wurden rekonstruiert um eine direkte selektive Sondierung der tumorversorgenden Arterie zu ermöglichen ohne Durchführung einer vorhergehenden konventionellen digitalen Subtraktionsangiografie (DSA). Eine weitere Kohorte mit 29 Patienten, in der eine Standard-TACE durchgeführt wurde diente als Kontrollgruppe (16 Männer; mittleres Alter, 69,4 ± 13,9 Jahre). Die Menge des verabreichten Kontrastmittels, die Strahlenbelastung des Radiologen und der Katheterverbrauch während der TACE wurden verglichen. Zwei Radiologen bewerteten die diagnostische Sicherheit für den Ausschluss einer Pfortaderthrombose.

Ergebnisse 4D-CTA TACE führte zu einer signifikanten Reduktion des benötigten Kontrastmittels im Vergleich zur traditionellen TACE (–61,0 ml / –66,3 % intraarteriell; –12,8 ml / –13,8 % insgesamt; P < 0,001). Das Dosisflächenprodukt, welches die Strahlenexposition des Radiologen während der Intervention anzeigt, wurde um 50,5 % reduziert (P < 0,001). Im Durchschnitt wurden 0,7 weniger Katheter verwendet (P = 0,063) wenn Daten einer 4D-CTA zur Verfügung standen. Die diagnostische Sicherheit für den Ausschluss einer Pfortaderthrombose wurde durch die 4D-CTA im Vergleich zu herkömmlichen DSA-Bildern signifikant erhöht (Werte, 3,9 bzw. 2,4; P < 0,001).

Schlussfolgerung Die dynamisches 4D-CTA ermöglicht die Durchführung einer TACE mit signifikant geringerer Kontrastmittelapplikation und Strahlenexposition des interventionellen Radiologen und erhöht die diagnostische Sicherheit für den Ausschluss einer Pfortaderthrombose.

Kernaussagen

  • 4D-CTA Untersuchungen vor TACE ermöglichen eine deutliche Kontrastmittelreduktion.

  • Der intraarterielle Anteil des Kontrastmittels wird dabei um zwei Drittel reduziert.

  • Das Risiko einer Kontrastmittel-induzierten Nephropathie könnte gesenkt werden durch die 4D-CTA TACE Technik.

  • 4D-CTA vor TACE führt zu einer geringeren Strahlenbelastung für den Radiologen.

  • 4D-CTA Portografie Bilder ermöglicht ein verbesserte diagnostische Konfidenz als konventionelle DSA Aufnahmen.

 
  • References

  • 1 Bonekamp S, Jolepalem P, Lazo M. et al. Hepatocellular Carcinoma: Response to TACE Assessed with Semiautomated Volumetric and Functional Analysis of Diffusion-weighted and Contrast-enhanced MR Imaging Data. Radiology 2011; 260: 752-761
  • 2 Bouvier A, Ozenne V, Aubé C. et al. Transarterial chemoembolisation: effect of selectivity on tolerance, tumour response and survival. Eur Radiol 2011; 21: 1719-1726
  • 3 Vogl TJ, Kreutzträger M, Gruber-Rouh T. et al. Neoadjuvant TACE before laser induced thermotherapy (LITT) in the treatment of non-colorectal non-breast cancer liver metastases: feasibility and survival rates. Eur J Radiol 2014; 83: 1804-1810
  • 4 Vogl TJ, Naguib NNN, Nour-Eldin N-EA. et al. Review on transarterial chemoembolization in hepatocellular carcinoma: Palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol 2009; 72: 505-516
  • 5 Vogl TJ, Zangos S, Eichler K. et al. Colorectal liver metastases: regional chemotherapy via transarterial chemoembolization (TACE) and hepatic chemoperfusion: an update. Eur Radiol 2006; 17: 1025-1034
  • 6 Chapman WC, Majella DoyleMB, Stuart JE. et al. Outcomes of neoadjuvant transarterial chemoembolization to downstage hepatocellular carcinoma before liver transplantation. Ann Surg 2008; 248: 617-625
  • 7 Eichler K, Jakobi S, Gruber-Rouh T. et al. Transarterial chemoembolisation (TACE) with gemcitabine: phase II study in patients with liver metastases of breast cancer. Eur J Radiol 2013; 82: e816-e822
  • 8 Heckman JT, deVera MB, Marsh JW. et al. Bridging Locoregional Therapy for Hepatocellular Carcinoma Prior to Liver Transplantation. Ann Surg Oncol 2008; 15: 3169-3177
  • 9 Vogl TJ, Müller PK, Mack MG. et al. Liver metastases: interventional therapeutic techniques and results, state of the art. Eur Radiol 1999; 9: 675-684
  • 10 King JN, Champlin AM, Kelsey CA. et al. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. Am J Roentgenol 2002; 178: 153-157
  • 11 Santen CB, Kan K, Velthuyse HJ. et al. Exposure of the radiologist to scattered radiation during angiography. Radiology 1975; 115: 447-450
  • 12 Hayakawa K, Tanikake M, Kirishima T. et al. The incidence of contrast-induced nephropathy (CIN) following transarterial chemoembolisation (TACE) in patients with hepatocellular carcinoma (HCC). Eur Radiol 2014; 24: 1105-1111
  • 13 Yamazaki H, Oi H, Matsushita M. et al. Renal cortical retention on delayed CT and nephropathy following transcatheter arterial chemoembolisation. Br J Radiol 2001; 74: 695-700
  • 14 Zhou C, Wang R, Ding Y. et al. Prognostic factors for acute kidney injury following transarterial chemoembolization in patients with hepatocellular carcinoma. Int J Clin Exp Pathol 2014; 7: 2579-2586
  • 15 Bartorelli AL, Marenzi G. Contrast-Induced Nephropathy. J Interv Cardiol 2008; 21: 74-85
  • 16 Bucher AM, De Cecco CN, Schoepf UJ. et al. Is contrast medium osmolality a causal factor for contrast-induced nephropathy?. Biomed Res Int 2014; 2014: 931413
  • 17 Gleeson TG, Bulugahapitiya S. Contrast-Induced Nephropathy. Am J Roentgenol 2004; 183: 1673-1689
  • 18 Persson PB. Contrast-induced nephropathy. Eur Radiol 2005; 15 (Suppl. 04) D65-D69
  • 19 Chou S-H, Wang ZJ, Kuo J. et al. Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration. Eur J Radiol 2011; 80: 378-386
  • 20 Davenport MS, Khalatbari S, Cohan RH. et al. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 2013; 268: 719-728
  • 21 Nyman U, Almén T, Jacobsson B. et al. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections?. Eur Radiol 2012; 22: 1366-1371
  • 22 Lufft V, Hoogestraat-Lufft L, Fels LM. et al. Contrast media nephropathy: intravenous CT angiography versus intraarterial digital subtraction angiography in renal artery stenosis: a prospective randomized trial. Am J Kidney Dis 2002; 40: 236-242
  • 23 Chou S-H, Wang ZJ, Kuo J. et al. Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration. Eur J Radiol 2011; 80: 378-386
  • 24 Schernthaner RE, Duran R, Chapiro J. et al. A new angiographic imaging platform reduces radiation exposure for patients with liver cancer treated with transarterial chemoembolization. Eur Radiol 2015; 25: 3255-3262
  • 25 Meinel FG, Nikolaou K, Weidenhagen R. et al. Time-resolved CT angiography in aortic dissection. Eur J Radiol 2012; 81: 3254-3261
  • 26 Sommer WH, Becker CR, Haack M. et al. Time-resolved CT angiography for the detection and classification of endoleaks. Radiology 2012; 263: 917-926