Der Nuklearmediziner 2018; 41(03): 211-221
DOI: 10.1055/a-0621-3182
PET Update 2018
© Georg Thieme Verlag KG Stuttgart · New York

Update PET in der Pädiatrischen Onkologie

Update PET in pediatric oncology
Wolfgang Roll
1   Klinik für Nuklearmedizin, Universitätsklinikum Münster, Münster
,
Uta Dirksen
2   Klinik für Kinderheilkunde III, Universitätsklinikum Essen, Westdeutsches Tumorzentrum Essen, Essen
3   Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Essen und Cancer Centre Cologne Essen (CCCE), Essen
,
Matthias Weckesser
1   Klinik für Nuklearmedizin, Universitätsklinikum Münster, Münster
› Author Affiliations
Further Information

Publication History

Publication Date:
07 September 2018 (online)

Zusammenfassung

Die PET/CT wird bei vielen kindlichen Tumorentitäten eingesetzt und hat beim Hodgkin-Lymphom bereits Eingang in nationale und internationale Leitlinien gefunden. Die PET ermöglicht eine semiquantitative Messung der metabolischen Tumoraktivität und damit eine frühe Beurteilung des Therapieansprechens sowie der Vitalität von Tumorrestgewebe oder eines Rezidivs. Für verschiedene Fragestellungen stehen unterschiedliche metabolische und molekulare Marker zur Verfügung.

In dieser Übersichtsarbeit werden Indikationen für PET im Kindesalter sowie die besonderen Anforderungen in der Durchführung und Befundung dargelegt. Abschließend wird die Bedeutung der neuen PET/MRT für die Diagnostik kindlicher Tumore diskutiert.

Abstract

PET/CT is used in many pediatric malignancies and is part of international guidelines for Hodgkin-lymphoma imaging. PET is useful for the evaluation of metabolic tumor activity. Thus it is helpful for the early determination of response to therapy and to delineate vital tumor tissue in residual or recurrent tumor. This review outlines different indications for PET in childhood using targeted molecular probes. Age related patient preparation and patterns of tracer distribution need special consideration during image analysis. The incremental value of PET/MRI for the imaging of pediatric malignancies is discussed.

 
  • Literatur

  • 1 PDQ Pediatric Treatment Editorial Board PPTE. Childhood Non-Hodgkin Lymphoma Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf Summ. National Cancer Institute (US); 2002: 1-7
  • 2 PDQ Pediatric Treatment Editorial Board PPTE. Childhood Hodgkin Lymphoma Treatment (PDQ®): Health Professional Version [Internet]. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26389170
  • 3 Furth C, Steffen IG, Amthauer H. et al. Early and Late Therapy Response Assessment With [18 F]Fluorodeoxyglucose Positron Emission Tomography in Pediatric Hodgkin’s Lymphoma: Analysis of a Prospective Multicenter Trial. J Clin Oncol 2009; 27: 4385-4391
  • 4 Flerlage JE, Kelly KM, Beishuizen A. et al. Staging Evaluation and Response Criteria Harmonization (SEARCH) for Childhood, Adolescent and Young Adult Hodgkin Lymphoma (CAYAHL): Methodology statement. Pediatr. Blood Cancer 2017; 64: e26421
  • 5 Cheson BD, Fisher RI, Barrington SF. et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: The lugano classification. J. Clin. Oncol. American Society of Clinical Oncology 2014; 32: 3059-3067
  • 6 Tsukamoto N, Kojima M, Hasegawa M. et al. The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67)gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer 2007; 110: 652-659
  • 7 Cheson BD. PET/CT in Lymphoma: Current Overview and Future Directions. Semin. Nucl. Med. Elsevier 2018; 48: 76-81
  • 8 Meignan M, Gallamini A, Meignan M. et al. Report on the First International Workshop on interim-PET scan in lymphoma. Leuk Lymphoma 2009; 50: 1257-1260
  • 9 PDQ Pediatric Treatment Editorial Board PPTE. Childhood Rhabdomyosarcoma Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002
  • 10 PDQ Pediatric Treatment Editorial Board PPTE. Osteosarcoma and Malignant Fibrous Histiocytoma of Bone Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002
  • 11 PDQ PediatricTreatment Editorial Board PPTE. Ewing Sarcoma Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002
  • 12 Pappo AS, Dirksen U. Rhabdomyosarcoma, Ewing Sarcoma, and Other Round Cell Sarcomas. J Clin Oncol 2018; 36: 168-179
  • 13 Franzius C, Daldrup-Link HE, Sciuk J. et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol Off J Eur Soc Med Oncol 2001; 12: 479-486
  • 14 Franzius C, Sciuk J, Daldrup-Link HE. et al. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 2000; 27: 1305-1311
  • 15 Völker T, Denecke T, Steffen I. et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. American Society of Clinical Oncology 2007; 25: 5435-5441
  • 16 Vrachimis A, Schäfers M, Dirksen U. et al. Positronenemissionstomografische Diagnostik kindlicher Sarkome. Der Nukl 2014; 37: 242-249
  • 17 Hawkins DS, Schuetze SM, Butrynski JE. et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 2005; 23: 8828-8834
  • 18 Denecke T, Hundsdörfer P, Misch D. et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 2010; 37: 1842-1853
  • 19 Andersen KF, Fuglo HM, Rasmussen SH. et al. Semi-Quantitative Calculations of Primary Tumor Metabolic Activity Using F-18 FDG PET/CT as a Predictor of Survival in 92 Patients With High-Grade Bone or Soft Tissue Sarcoma. Medicine (Baltimore) 2015; 94: e1142
  • 20 Colleran GC, Kwatra N, Oberg L. et al. How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting. Cancer Imaging 2017; 17: 28
  • 21 Raciborska A, Bilska K, Drabko K. et al. Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol 2016; 18: 189-195
  • 22 Hawkins DS, Conrad EU, Butrynski JE. et al. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 2009; 115: 3519-3525
  • 23 Gaspar N, Hawkins DS, Dirksen U. et al. Ewing Sarcoma: Current Management and Future Approaches Through Collaboration. J Clin Oncol 2015; 33: 3036-3046
  • 24 Haeusler J, Ranft A, Boelling T. et al. The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 2010; 116: 443-50
  • 25 Newman EN, Jones RL, Hawkins DS. An Evaluation of [F-18]-Fluorodeoxy- D -Glucose Positron Emission Tomography , Bone Scan , and Bone Marrow Aspiration / Biopsy as Staging Investigations in Ewing Sarcoma. Pediatr Blood Cancer 2013; 60: 1113-1117
  • 26 Treglia G, Salsano M, Stefanelli A. et al. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 2012; 41: 249-256
  • 27 Jamet B, Carlier T, Campion L. et al. Initial FDG-PET/CT predicts survival in adults Ewing sarcoma family of tumors. Oncotarget. Impact Journals 2017; 8: 77050-77060
  • 28 Palmerini E, Colangeli M, Nanni C. et al. The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging 2017; 44: 215-223
  • 29 Gupta K, Pawaskar A, Basu S. et al. Potential Role of FDG PET Imaging in Predicting Metastatic Potential and Assessment of Therapeutic Response to Neoadjuvant Chemotherapy in Ewing Sarcoma Family of Tumors. Clin Nucl Med 2011; 36: 973-977
  • 30 ClinicalTrials.gov. Study in Localized and Disseminated Ewing Sarcoma (EWING2008). 01.10.2009 Available at: https://clinicaltrials.gov/ct2/show/NCT00987636 [Accessed 27 Apr. 2018)
  • 31 Heinemann M, Ranft A, Langer T. et al. Recurrence of Ewing sarcoma: Is detection by imaging follow-up protocol associated with survival advantage?. Pediatr Blood Cancer [Internet] 2018; e27011
  • 32 Heinemann M, Ranft A, Jürgens H. et al. Ewing sarcoma during follow-up. Nuklearmedizin 2017; 56: 233-238
  • 33 Sharma P, Khangembam BC, Suman KCS. et al. Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging 2013; 40: 1036-1043
  • 34 Harrison DJ, Parisi MT, Shulkin BL. The Role of 18 F-FDG-PET/CT in Pediatric Sarcoma. Semin Nucl Med 2017; 47: 229-241
  • 35 Norman G, Fayter D, Lewis-Light K. et al. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: systematic review. BMJ Open 2015; 5: e006030
  • 36 Federico SM, Spunt SL, Krasin MJ. et al. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer 2013; 60: 1128-1134
  • 37 Baum SH, Fruhwald M, Rahbar K. et al. Contribution of PET/CT to Prediction of Outcome in Children and Young Adults with Rhabdomyosarcoma. J Nucl Med 2011; 52: 1535-1540
  • 38 Harrison DJ, Parisi MT, Shulkin BL. et al. 18F 2Fluoro-2deoxy-D-glucose positron emission tomography (FDG-PET) response to predict event-free survival (EFS) in intermediate risk (IR) or high risk (HR) rhabdomyosarcoma (RMS): A report from the Soft Tissue Sarcoma Committee of the Children’s Oncolog. American Society of Clinical Oncology; 2016
  • 39 Casey DL, Wexler LH, Fox JJ. et al. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [18F]Fluorodeoxyglucose Positron Emission Tomography. Int J Radiat Oncol 2014; 90: 1136-42
  • 40 PDQ Pediatric Treatment Editorial Board PPTE. Neuroblastoma Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002
  • 41 Melzer HI, Coppenrath E, Schmid I. et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011; 38: 1648-1658
  • 42 Gatidis S, Bender B, Reimold M. et al. PET/MRI in children. Eur. J. Radiol 2017; 42: A64-A70
  • 43 Alexander N, Vali R, Ahmadzadehfar H. et al. Review: The role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm 2017; 11: 14-21
  • 44 Ostrom QT, Gittleman H, Fulop J. et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008 – 2012.
  • 45 Plotkin M, Guggemos A, Grosse F. et al. Rolle der PET in der Diagnostik von Hirntumoren im Kindes- und Jugendalter. Der Nukl 2014; 37: 254-257
  • 46 Herholz K, Pietrzyk U, Voges J. et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993; 79: 853-858
  • 47 Plotkin M, Blechschmidt C, Auf G. et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol 2010; 20: 2496-2502
  • 48 Messing-Jünger AM, Floeth FW, Pauleit D. et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Child’s Nerv Syst 2002; 18: 445-449
  • 49 Piroth MD, Galldiks N, Pinkawa M. et al. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume. Radiat Oncol 2016; 11: 87
  • 50 Poulsen SH, Urup T, Grunnet K. et al. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2017; 44: 373-381
  • 51 Di Chiro G, DeLaPaz RL, Brooks RA. et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-1329
  • 52 Misch M, Guggemos A, Driever PH. et al. 18F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Child’s Nerv Syst 2015; 31: 261-267
  • 53 Dunkl V, Cleff C, Stoffels G. et al. The Usefulness of Dynamic O-(2-18F-Fluoroethyl)-L-Tyrosine PET in the Clinical Evaluation of Brain Tumors in Children and Adolescents. J Nucl Med 2015; 56: 88-92
  • 54 Weckesser M, Langen KJ, Rickert CH. et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 55 Rachinger W, Goetz C, Pöpperl G. et al. Positron emission tomography with O-(2-[18F]flouroethyl)-L- tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511
  • 56 Pöpperl G, Götz C, Rachinger W. et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 57 Pöpperl G, Goldbrunner R, Gildehaus FJ. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 58 Plotkin M, Guggemos A, Steffen I. et al. Prospektive, multizentrische Studie zur Bedeutung der O-(2-[18F]Fluoroethyl)-L-Tyrosin-Positronen-Emissions-Tomografie (FET-PET) in der Verlaufsbeurteilung von Hirntumoren im Kindes- und Jugendalter (FET PET 2010). Der Nukl. 2011; 34: 125-129
  • 59 PDQ Pediatric Treatment Editorial Board PPTE. Langerhans Cell Histiocytosis Treatment (PDQ®): Health Professional Version. PDQ Cancer Inf. Summ. National Cancer Institute (US); 2002
  • 60 Phillips M, Allen C, Gerson P. et al. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 2009; 52: 97-101
  • 61 Kaste SC, Rodriguez-Galindo C, McCarville ME. et al. PET-CT in pediatric Langerhans cell histiocytosis. Pediatr Radiol 2007; 37: 615-622
  • 62 Sher AC, Orth R, McClain K. et al. PET/MR in the Assessment of Pediatric Histiocytoses. Clin Nucl Med 2017; 42: 582-588
  • 63 Francis GL, Waguespack SG, Bauer AJ. et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer The American Thyroid Association Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid Am Thyroid Assoc 2015; 25: 716-759
  • 64 Evans DGR, Baser ME, McGaughran J. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002; 39: 311-314
  • 65 Ferner RE, Huson SM, Thomas N. et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. BMJ Publishing Group 2007; 44: 81-88
  • 66 Tsai LL, Drubach L, Fahey F. et al. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: Correlation with malignant transformation. J Neurooncol 2012; 108: 469-475
  • 67 Azizi AA, Slavc I, Theisen BE. et al. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [18 F]FDG-PET imaging. Is it of value in asymptomatic patients?. Pediatr Blood Cancer 2018; 65: e26733
  • 68 Gatidis S, Gückel B, la Fougère C. et al. Simultane Ganzkörper-PET-MRT in der pädiatrischen Onkologie: Mehr als nur Strahlenersparnis?. Radiologe 2016; 56: 622-630
  • 69 Stauss J, Franzius C, Pfluger T. et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008; 35: 1581-1588
  • 70 Chugani HT. A Critical Period of Brain Development: Studies of Cerebral Glucose Utilization with PET. Prev Med (Baltim) 1998; 27: 184-188
  • 71 Chawla SC, Federman N, Zhang D. et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010; 40: 681-686
  • 72 Nievelstein RAJ, Quarles van Ufford HME, Kwee TC. et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol 2012; 22: 1946-1954
  • 73 Parisi MT, Bermo MS, Alessio AM. et al. Optimization of Pediatric PET/CT. Semin Nucl Med 2017; 47: 258-274
  • 74 Journy NMY, Lee C, Harbron RW. et al. Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990-2020. Br J Cancer. Nature Publishing Group 2017; 116: 109-116
  • 75 Miglioretti DL, Johnson E, Williams A. et al. The Use of Computed Tomography in Pediatrics and the Associated Radiation Exposure and Estimated Cancer Risk. JAMA Pediatr. American Medical Association 2013; 167: 700
  • 76 De Bruin ML, Sparidans J, van’t Veer MB. et al. Breast Cancer Risk in Female Survivors of Hodgkin’s Lymphoma: Lower Risk After Smaller Radiation Volumes. J Clin Oncol 2009; 27: 4239-4246
  • 77 Juergens KU, Weckesser M, Stegger L. et al. Tumor staging using whole-body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules?. Eur Radiol 2006; 16: 1131-1137
  • 78 Morana G, Piccardo A, Tortora D. et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET. Eur J Nucl Med Mol Imaging 2017; 44: 2084-2093
  • 79 Zukotynski KA, Vajapeyam S, Fahey FH. et al. Correlation of 18F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium. J Nucl Med 2017; 58: 1264-1269
  • 80 Fuchs J, Seitz G, Handgretinger R. et al. Surgical treatment of lung metastases in patients with embryonal pediatric solid tumors: an update. Semin Pediatr Surg 2012; 21: 79-87