Pneumologie 2018; 72(10): 687-731
DOI: 10.1055/a-0637-8593
Empfehlungen
© Georg Thieme Verlag KG Stuttgart · New York

Belastungsuntersuchungen in der Pneumologie – Empfehlungen der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V.

Exercise Testing in Respiratory Medicine – DGP Recommendations
F. J. Meyer*
 1   Lungenzentrum München (LZM Bogenhausen-Harlaching), Städtisches Klinikum München GmbH
,
M. M. Borst
 2   Medizinische Klinik I, Caritas-Krankenhaus, Bad Mergentheim
,
H.-C. Buschmann
 3   Klinik für Pneumologie und Allgemeine Innere Medizin, Brüderkrankenhaus St. Josef, Paderborn
,
M. Claussen
 4   LungenClinic Grosshansdorf, Großhansdorf
,
D. Dumitrescu
 5   Herzzentrum Uniklinik Köln, Klinik für Innere Medizin III
,
R. Ewert
 6   Klinik und Poliklinik für Innere Medizin B, Bereich Pneumologie/Infektiologie, Universitätsmedizin Greifswald
,
B. Friedmann-Bette
 7   Abt. Innere Medizin VII, Universitätsklinikum Heidelberg
,
S. Gläser
 8   Klinik für Innere Medizin – Pneumologie, Vivantes Klinikum Spandau, Berlin
,
R. Glöckl
 9   Schön Klinik Berchtesgadener Land, Schönau am Königssee
,
K. Haring
 1   Lungenzentrum München (LZM Bogenhausen-Harlaching), Städtisches Klinikum München GmbH
,
B. Lehnigk
10   Paracelsus-Harz-Klinik, Abt. Pneumologie OT Bad Suderode, Quedlinburg
,
U. Ochmann
11   Institut für Arbeits-, Sozial- und Umweltmedizin, Klinikum der Universität München
,
A. M. Preisser
12   Zentralinstitut für Arbeitsmedizin und Maritime Medizin, Universitätsklinikum Hamburg-Eppendorf
,
S. Sorichter
13   St. Josefskrankenhaus, Klinik für Pneumologie und Beatmungsmedizin, Freiburg
,
M. Westhoff
14   Universität Witten-Herdecke, Klinik für Pneumologie, Lungenklinik Hemer
,
H. Worth*
15   Facharztforum Fürth
› Author Affiliations
Further Information

Publication History

Publication Date:
10 October 2018 (online)

Zusammenfassung

Dieses Dokument der DGP ersetzt die Empfehlungen von 1998 und 2013. Anhand der aktuellen Datenlage und einer Konsensuskonferenz wurden Empfehlungen zu Indikationen, zur Auswahl und Durchführung der geeigneten Belastungsuntersuchungen sowie zu den technischen und personellen Voraussetzungen formuliert. Detaillierte Angaben werden zur Blutgasanalyse unter Belastung, zu Gehtests und Rechtsherzkatheter unter Belastung sowie zur Spiroergometrie und Stressechokardiografie gemacht. Der korrekte Einsatz von Belastungsuntersuchungen bei anstrengungsinduziertem Asthma, bei sport-, arbeits- bzw. rehabilitationsmedizinischen Fragestellungen, bei Adipositas, bei der präoperativen Risikostratifizierung und beim Therapiemonitoring pneumologischer Erkrankungen wird dargestellt.

Abstract

This document replaces the DGP recommendations published in 1998 and 2013. Based on recent studies and a consensus conference, the indications, choice and performance of the adequate exercise testing method and its necessary technical and staffing setting are discussed. Detailed recommendations are provided: for blood gas analysis and right heart catheterization during exercise, walk tests, spiroergometry, and stress echocardiography. The correct use of different exercise tests is discussed for specific situations in respiratory medicine: exercise induced asthma, obesity, monitoring of rehabilitation or therapeutical interventions, preoperative risk stratification, and evaluation in occupational medicine.

* federführend


 
  • Literatur

  • 1 ATS/ACCP. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211-277
  • 2 Fletcher GF, Ades PA, Kligfield P. et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 2013; 128: 873-934
  • 3 Balady GJ, Arena R, Sietsema K. et al. Clinicianʼs Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010; 122: 191-225
  • 4 Palange P, Ward SA, Carlsen KH. et al. Recommendations on the use of exercise testing in clinical practice. Eur Respir J 2007; 29: 185-209
  • 5 Guazzi M, Adams V, Conraads V. et al. EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J 2012; 33: 2917-2927
  • 6 Guazzi M, Arena R, Halle M. et al. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016; 133: e694-711
  • 7 Puente-Maestu L, Palange P, Casaburi R. et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. The European respiratory journal 2016; 47: 429-460
  • 8 Meyer FJ, Borst MM, Buschmann HC. et al. [Exercise testing in respiratory medicine]. Pneumologie 2013; 67: 16-34
  • 9 Keteyian SJ, Isaac D, Thadani U. et al. Safety of symptom-limited cardiopulmonary exercise testing in patients with chronic heart failure due to severe left ventricular systolic dysfunction. Am Heart J 2009; 158: S72-S77
  • 10 Myers J, Forman DE, Balady GJ. et al. Supervision of exercise testing by nonphysicians: a scientific statement from the American Heart Association. Circulation 2014; 130: 1014-1027
  • 11 Skalski J, Allison TG, Miller TD. The safety of cardiopulmonary exercise testing in a population with high-risk cardiovascular diseases. Circulation 2012; 126: 2465-2472
  • 12 Hughes JMB. Physiology and practice of pulmonary function. West Midlands: Association for respiratory technology and physiology (ARTP); 2009
  • 13 Meyer FJ, Pressler A. Belastungsuntersuchungen/Spiroergometrie. Berlin, Heidelberg: Springer-Verlag; 2017
  • 14 Miyamura M, Honda Y. Oxygen intake and cardiac output during maximal treadmill and bicycle exercise. J Appl Physiol 1972; 32: 185-188
  • 15 Christensen CC, Ryg MS, Edvardsen A. et al. Effect of exercise mode on oxygen uptake and blood gases in COPD patients. Respir Med 2004; 98: 656-660
  • 16 Buchfuhrer MJ, Hansen JE, Robinson TE. et al. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 1983; 55: 1558-1564
  • 17 Hsia D, Casaburi R, Pradhan A. et al. Physiological responses to linear treadmill and cycle ergometer exercise in COPD. Eur Respir J 2009; 34: 605-615
  • 18 Edvardsen E, Hansen BH, Holme IM. et al. Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest 2013; 144: 241-248
  • 19 Mathur RS, Revill SM, Vara DD. et al. Comparison of peak oxygen consumption during cycle and treadmill exercise in severe chronic obstructive pulmonary disease. Thorax 1995; 50: 829-833
  • 20 Bonzheim SC, Franklin BA, DeWitt C. et al. Physiologic responses to recumbent versus upright cycle ergometry, and implications for exercise prescription in patients with coronary artery disease. Am J Cardiol 1992; 69: 40-44
  • 21 Kroidl RF, Schwarz S, Lehnigk B. et al. Kursbuch Spiroergometrie. 3.. Aufl. Stuttgart: Thieme; 2015
  • 22 Löllgen H, Erdmann E, Gitt A. Ergometrie. 3.. Aufl. Heidelberg: Springer Verlag; 2009
  • 23 Servera E, Gimenez M. V̇O2max during progressive and constant bicycle exercise in patients with chronic obstructive lung disease. Respiration 1984; 45: 197-206
  • 24 Wasserman K, Hansen JE, Sietsema K. et al. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th. revised Aufl. Wolters Kluwer Health; 2015
  • 25 Debigare R, Maltais F, Mallet M. et al. Influence of work rate incremental rate on the exercise responses in patients with COPD. Med Sci Sports Exerc 2000; 32: 1365-1368
  • 26 Revill SM, Beck KE, Morgan MD. Comparison of the peak exercise response measured by the ramp and 1-min step cycle exercise protocols in patients with exertional dyspnea. Chest 2002; 121: 1099-1105
  • 27 Benzo RP, Paramesh S, Patel SA. et al. Optimal protocol selection for cardiopulmonary exercise testing in severe COPD. Chest 2007; 132: 1500-1505
  • 28 Glaser S, Lodziewski S, Koch B. et al. Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension. BMC Pulm Med 2008; 8: 3
  • 29 Naughton JP, Balke B, Nagle FJ. Refinements in methods of evaluation and physical conditioning before and after myocardial infarction. Am J Cardiol 1964; 14: 837-843
  • 30 Bruce RA, McDonough JR. Stress testing in screening for cardiovascular disease. Bull N Y Acad Med 1969; 45: 1288-1305
  • 31 Midgley AW, Bentley DJ, Luttikholt H. et al. Challenging a dogma of exercise physiology: does an incremental exercise test for valid V̇O2max determination really need to last between 8 and 12 minutes?. Sports Med 2008; 38: 441-447
  • 32 ATS. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166: 111-117
  • 33 Whipp BJ. Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol 1971; 30: 261-263
  • 34 Nery LE, Wasserman K, Andrews JD. et al. Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction. J Appl Physiol 1982; 53: 1594-1602
  • 35 Casaburi R, Porszasz J. Constant work rate exercise testing: a tricky measure of exercise tolerance. COPD 2009; 6: 317-319
  • 36 Puente-Maestu L, Villar F, de Miguel J. et al. Clinical relevance of constant power exercise duration changes in COPD. Eur Respir J 2009; 34: 340-345
  • 37 Nagle FJ, Balke B, Naughton JP. Gradational step tests for assessing work capacity. J Appl Physiol 1965; 20: 745-748
  • 38 Naughton JP, Hellerstein HK, Haider R. Methods of exercise testing. In Exercise testing and exercise training in coronary heart disease. New York: Academic Press; 1973
  • 39 Brown SE, Fischer CE, Stansbury DW. et al. Reproducibility of V̇O2max in patients with chronic air-flow obstruction. Am Rev Respir Dis 1985; 131: 435-438
  • 40 Marciniuk DD, Watts RE, Gallagher CG. Reproducibility of incremental maximal cycle ergometer testing in patients with restrictive lung disease. Thorax 1993; 48: 894-898
  • 41 OʼDonnell DE, Travers J, Webb KA. et al. Reliability of ventilatory parameters during cycle ergometry in multicentre trials in COPD. Eur Respir J 2009; 34: 866-874
  • 42 Hansen JE, Sun XG, Yasunobu Y. et al. Reproducibility of cardiopulmonary exercise measurements in patients with pulmonary arterial hypertension. Chest 2004; 126: 816-824
  • 43 Barron A, Dhutia N, Mayet J. et al. Test-retest repeatability of cardiopulmonary exercise test variables in patients with cardiac or respiratory disease. Eur J Prev Cardiol 2014; 21: 445-453
  • 44 Shephard RJ. Tests of maximum oxygen intake. A critical review. Sports Med 1984; 1: 99-124
  • 45 Trappe HJ, Lollgen H. [Guidelines for ergometry. German Society of Cardiology--Heart and Cardiovascular Research]. Z Kardiol 2000; 89: 821-831
  • 46 Borg G. Anstrengungsempfinden. Dt Aerztebl 2004; 101: A1026-A1021
  • 47 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
  • 48 Gigliotti F, Coli C, Bianchi R. et al. Exercise training improves exertional dyspnea in patients with COPD: evidence of the role of mechanical factors. Chest 2003; 123: 1794-1802
  • 49 Tomioka H, Mamesaya N, Yamashita S. et al. Combined pulmonary fibrosis and emphysema: effect of pulmonary rehabilitation in comparison with chronic obstructive pulmonary disease. BMJ Open Respir Res 2016; 3: e000099
  • 50 Yilmaz Yelvar GD, Cirak Y, Demir YP. et al. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 1353-1357
  • 51 LeGear T, LeGear M, Preradovic D. et al. Does a Nintendo Wii exercise program provide similar exercise demands as a traditional pulmonary rehabilitation program in adults with COPD?. Clin Respir J 2016; 10: 303-310
  • 52 [Anonym] Handbuch Lungensport. Ein Leitfaden für Übungsleiter,Therapeuten und Ärzte. Paderborn: Verlag Martin Schiefer; 2018
  • 53 Koppers RJ, Vos PJ, Boot CR. et al. Exercise performance improves in patients with COPD due to respiratory muscle endurance training. Chest 2006; 129: 886-892
  • 54 Chatila W, Nugent T, Vance G. et al. The effects of high-flow vs low-flow oxygen on exercise in advanced obstructive airways disease. Chest 2004; 126: 1108-1115
  • 55 Schwabbauer N, Berg B, Blumenstock G. et al. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol 2014; 14: 66
  • 56 Nasilowski J, Przybylowski T, Zielinski J. et al. Comparing supplementary oxygen benefits from a portable oxygen concentrator and a liquid oxygen portable device during a walk test in COPD patients on long-term oxygen therapy. Respir Med 2008; 102: 1021-1025
  • 57 Nonoyama ML, Brooks D, Lacasse Y. et al. Oxygen therapy during exercise training in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007; DOI: 10.1002/14651858.CD005372.pub2.
  • 58 O'Donnell DE, Fluge T, Gerken F. et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004; 23: 832-840
  • 59 Borel B, Wilkinson-Maitland CA, Hamilton A. et al. Three-minute constant rate step test for detecting exertional dyspnea relief after bronchodilation in COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 2991-3000
  • 60 Beeh KM, Wagner F, Khindri S. et al. Effect of indacaterol on dynamic lung hyperinflation and breathlessness in hyperinflated patients with COPD. COPD 2011; 8: 340-345
  • 61 Soumagne T, Laveneziana P, Veil-Picard M. et al. Asymptomatic subjects with airway obstruction have significant impairment at exercise. Thorax 2016; 71: 804-811
  • 62 Kendrick KR, Baxi SC, Smith RM. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J Emerg Nurs 2000; 26: 216-222
  • 63 Rubin LJ, Badesch DB, Barst RJ. et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346: 896-903
  • 64 Ries AL. Minimally clinically important difference for the UCSD Shortness of Breath Questionnaire, Borg Scale, and Visual Analog Scale. COPD 2005; 2: 105-110
  • 65 Sauer G, Andresen D, Cierpka R. et al. [Position paper to the taking of quality controls for resting, exercise, and long-term-ECG]. Z Kardiol 2005; 94: 844-857
  • 66 Cacau LA, Santana-Filho VJ, Maynard LG. et al. Reference Values for the Six-Minute Walk Test in Healthy Children and Adolescents: a Systematic Review. Braz J Cardiovasc Surg 2016; 31: 381-388
  • 67 Enright PL, McBurnie MA, Bittner V. et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest 2003; 123: 387-398
  • 68 Roberts MM, Cho JG, Sandoz JS. et al. Oxygen desaturation and adverse events during 6-min walk testing in patients with COPD. Respirology 2015; 20: 419-425
  • 69 Hill K, Dolmage TE, Woon L. et al. Comparing peak and submaximal cardiorespiratory responses during field walking tests with incremental cycle ergometry in COPD. Respirology 2012; 17: 278-284
  • 70 Holland AE, Spruit MA, Troosters T. et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. The European respiratory journal 2014; 44: 1428-1446
  • 71 Weir NA, Brown AW, Shlobin OA. et al. The influence of alternative instruction on 6-min walk test distance. Chest 2013; 144: 1900-1905
  • 72 Chuang ML, Lin IF, Chen SP. Kinetics of changes in oxyhemoglobin saturation during walking and cycling tests in COPD. Respiratory care 2014; 59: 353-362
  • 73 Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. The European respiratory journal 1999; 14: 270-274
  • 74 Andrianopoulos V, Holland AE, Singh SJ. et al. Six-minute walk distance in patients with chronic obstructive pulmonary disease: Which reference equations should we use?. Chron Respir Dis 2015; 12: 111-119
  • 75 Pinto-Plata VM, Cote C, Cabral H. et al. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. The European respiratory journal 2004; 23: 28-33
  • 76 Casanova C, Cote CG, Marin JM. et al. The 6-min walking distance: long-term follow up in patients with COPD. Eur Respir J 2007; 29: 535-540
  • 77 Singh SJ, Puhan MA, Andrianopoulos V. et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. The European respiratory journal 2014; 44: 1447-1478
  • 78 Hernandes NA, Wouters EF, Meijer K. et al. Reproducibility of 6-minute walking test in patients with COPD. The European respiratory journal 2010; DOI: 10.1183/09031936.00142010.
  • 79 Demers C, McKelvie RS, Negassa A. et al. Reliability, validity, and responsiveness of the six-minute walk test in patients with heart failure. Am Heart J 2001; 142: 698-703
  • 80 Olsson LG, Swedberg K, Clark AL. et al. Six minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J 2005; 26: 778-793
  • 81 Oki Y, Kaneko M, Fujimoto Y. et al. Usefulness of the 6-minute walk test as a screening test for pulmonary arterial enlargement in COPD. International journal of chronic obstructive pulmonary disease 2016; 11: 2869-2875
  • 82 Miyamoto S, Nagaya N, Satoh T. et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 2000; 161: 487-492
  • 83 Lee WT, Peacock AJ, Johnson MK. The role of per cent predicted 6-min walk distance in pulmonary arterial hypertension. Eur Respir J 2010; 36: 1294-1301
  • 84 Reichenberger F, Voswinckel R, Enke B. et al. Long-term treatment with sildenafil in chronic thromboembolic pulmonary hypertension. The European respiratory journal 2007; 30: 922-927
  • 85 Dolmage TE, Hill K, Evans RA. et al. Has my patient responded? Interpreting clinical measurements such as the 6-minute-walk test. Am J Respir Crit Care Med 2011; 184: 642-646
  • 86 Polkey MI, Spruit MA, Edwards LD. et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med 2013; 187: 382-386
  • 87 Singh SJ, Morgan MD, Scott S. et al. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992; 47: 1019-1024
  • 88 Singh SJ, Jones PW, Evans R. et al. Minimum clinically important improvement for the incremental shuttle walking test. Thorax 2008; 63: 775-777
  • 89 Revill SM, Morgan MD, Singh SJ. et al. The endurance shuttle walk: a new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax 1999; 54: 213-222
  • 90 Pepin V, Laviolette L, Brouillard C. et al. Significance of changes in endurance shuttle walking performance. Thorax 2011; 66: 115-120
  • 91 Borel B, Provencher S, Saey D. et al. Responsiveness of Various Exercise-Testing Protocols to Therapeutic Interventions in COPD. Pulm Med 2013; 2013 DOI: 10.1155/2013/410748.
  • 92 Brouillard C, Pepin V, Milot J. et al. Endurance shuttle walking test: responsiveness to salmeterol in COPD. Eur Respir J 2008; 31: 579-584
  • 93 Fajac I, Texereau J, Rivoal V. et al. Blood gas measurement during exercise: a comparative study between arterialized earlobe sampling and direct arterial puncture in adults. Eur Respir J 1998; 11: 712-715
  • 94 Diekmann M, Smidt U. Berechnung eines Standard-PaO2 in Analogie zum Standard-Bikarbonat. Atemw Lungenkr 1984; 10: 248-260
  • 95 Preisser AM, Seeber M, Harth V. Diffusion limitations of the lung – comparison of different measurement methods. Adv Exp Med Biol 2015; 849: 65-73
  • 96 Glaser S, Ittermann T, Schaper C. et al. [The Study of Health in Pomerania (SHIP) reference values for cardiopulmonary exercise testing]. Pneumologie 2013; 67: 58-63
  • 97 Hollmann W, Hettinger T. Sportmedizin. Grundlagen für Arbeit, Training und Präventivmedizin. 4.. Aufl. Stuttgart, New York: Schattauer; 2000
  • 98 Elbehairy AF, Ciavaglia CE, Webb KA. et al. Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance. Am J Respir Crit Care Med 2015; 191: 1384-1394
  • 99 Meyer-Erkelenz JD, Mosges RW, Sieverts H. [Spiroergometry (cardiopulmonary function under load). Report of the results of the 1979 colloquium in Aachen]. Prax Klin Pneumol 1980; 34: 585-600
  • 100 Poole DC, Jones AM. Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. J Appl Physiol (1985) 2017; 122: 997-1002
  • 101 Kroidl RF, Schwarz S, Lehnigk B. et al. Kursbuch Spiroergometrie. 4.. Aufl. Stuttgart: Thieme; 2014
  • 102 Campbell SC. A comparison of the maximum voluntary ventilation with the forced expiratory volume in one second: an assessment of subject cooperation. J Occup Med 1982; 24: 531-533
  • 103 Babb T, Viggiano R, Hurley B. et al. Effect of mild to moderate airflow limitation on exercise capacity. J Appl Physiol 1991; 70: 223-230
  • 104 Johnson BD, Weisman IM, Zeballos RJ. et al. Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop. Chest 1999; 116: 488-503
  • 105 Babb TG, Viggiano R, Hurley B. et al. Effect of mild-to-moderate airflow limitation on exercise capacity. J Appl Physiol (1985) 1991; 70: 223-230
  • 106 Babb TG. Exercise ventilatory limitation: the role of expiratory flow limitation. Exerc Sport Sci Rev 2013; 41: 11-18
  • 107 Guenette JA, Chin RC, Cory JM. et al. Inspiratory Capacity during Exercise: Measurement, Analysis, and Interpretation. Pulm Med 2013; 2013 DOI: 10.1155/2013/956081.
  • 108 Agostoni P, Pellegrino R, Conca C. et al. Exercise hyperpnea in chronic heart failure: relationships to lung stiffness and expiratory flow limitation. J Appl Physiol 2002; 92: 1409-1416
  • 109 Stubbing DG, Pengelly LD, Morse JL. et al. Pulmonary mechanics during exercise in normal males. J Appl Physiol Respir Environ Exerc Physiol 1980; 49: 506-510
  • 110 Stubbing DG, Pengelly LD, Morse JL. et al. Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J Appl Physiol Respir Environ Exerc Physiol 1980; 49: 511-515
  • 111 O'Donnell DE, Banzett RB, Carrieri-Kohlman V. et al. Pathophysiology of dyspnea in chronic obstructive pulmonary disease: a roundtable. Proc Am Thorac Soc 2007; 4: 145-168
  • 112 Richter MJ, Tiede H, Morty RE. et al. The prognostic significance of inspiratory capacity in pulmonary arterial hypertension. Respiration 2014; 88: 24-30
  • 113 Meyer FJ, Ewert R, Hoeper MM. et al. Peripheral airway obstruction in primary pulmonary hypertension. Thorax 2002; 57: 473-476
  • 114 Chiari S, Torregiani C, Boni E. et al. Dynamic pulmonary hyperinflation occurs without expiratory flow limitation in chronic heart failure during exercise. Respir Physiol Neurobiol 2013; 189: 34-41
  • 115 Koulouris NG, Hardavella G. Physiological techniques for detecting expiratory flow limitation during tidal breathing. Eur Respir Rev 2011; 20: 147-155
  • 116 Pride NB, Permutt S, Riley RL. et al. Determinants of maximal expiratory flow from the lungs. J Appl Physiol 1967; 23: 646-662
  • 117 Bussotti M, Agostoni P, Durigato A. et al. Do maximum flow-volume loops collected during maximum exercise test alter the main cardiopulmonary parameters?. Chest 2009; 135: 425-433
  • 118 Kremser CB, O'Toole MF, Leff AR. Oscillatory hyperventilation in severe congestive heart failure secondary to idiopathic dilated cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol 1987; 59: 900-905
  • 119 Corra U. Exercise oscillatory ventilation in heart failure. Int J Cardiol 2016; 206: S13-15
  • 120 Cornelis J, Beckers P, Vanroy C. et al. An overview of the applied definitions and diagnostic methods to assess exercise oscillatory ventilation – a systematic review. Int J Cardiol 2015; 190: 161-169
  • 121 Dhakal BP, Lewis GD. Exercise oscillatory ventilation: Mechanisms and prognostic significance. World J Cardiol 2016; 8: 258-266
  • 122 Corra U, Giordano A, Bosimini E. et al. Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest 2002; 121: 1572-1580
  • 123 Scardovi AB, De Maria R, Ferraironi A. et al. A case for assessment of oscillatory breathing during cardiopulmonary exercise test in risk stratification of elderly patients with chronic heart failure. Int J Cardiol 2012; 155: 115-119
  • 124 Kisaka T, Rossiter HB, Wasserman K. et al. Exercise oscillatory ventilation: ventilation-perfusion abnormality in heart failure. Int J Cardiol 2015; 185: 55
  • 125 Caravita S, Faini A, Deboeck G. et al. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component. J Heart Lung Transplant 2017; 36: 754-762
  • 126 Vicenzi M, Deboeck G, Faoro V. et al. Exercise oscillatory ventilation in heart failure and in pulmonary arterial hypertension. Int J Cardiol 2016; 202: 736-740
  • 127 Guazzi M, Arena R, Pellegrino M. et al. Prevalence and characterization of exercise oscillatory ventilation in apparently healthy individuals at variable risk for cardiovascular disease: A subanalysis of the EURO-EX trial. Eur J Prev Cardiol 2016; 23: 328-334
  • 128 Cornelis J, Vrints C, Vissers D. et al. The effect of exercise training on exercise oscillatory ventilation in heart failure. Eur J Prev Cardiol 2017; 24: 1283-1284
  • 129 Jaussaud J, Blanc P, Derval N. et al. Ventilatory response and peak circulatory power: new functional markers of response after cardiac resynchronization therapy. Arch Cardiovasc Dis 2010; 103: 184-191
  • 130 Williams SG, Cooke GA, Wright DJ. et al. Peak exercise cardiac power output; a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure. Eur Heart J 2001; 22: 1496-1503
  • 131 Forman DE, Guazzi M, Myers J. et al. Ventilatory power: a novel index that enhances prognostic assessment of patients with heart failure. Circ Heart Fail 2012; 5: 621-626
  • 132 Borghi-Silva A, Labate V, Arena R. et al. Exercise ventilatory power in heart failure patients: functional phenotypes definition by combining cardiopulmonary exercise testing with stress echocardiography. Int J Cardiol 2014; 176: 1348-1349
  • 133 Westhoff M, Ruhle KH, Greiwing A. et al. [Positional paper of the German working group “cardiopulmonary exercise testing” to ventilatory and metabolic (lactate) thresholds]. Dtsch Med Wochenschr 2013; 138: 275-280
  • 134 Whipp BJ, Ward SA, Lamarra N. et al. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol Respir Environ Exerc Physiol 1982; 52: 1506-1513
  • 135 Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol Occup Physiol 1979; 42: 25-34
  • 136 Mader AL, Heck HH. et al. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dtsch Z Sportmed 1976; 32: 9
  • 137 Binder RK, Wonisch M, Corra U. et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 2008; 15: 726-734
  • 138 Stelken AM, Younis LT, Jennison SH. et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol 1996; 27: 345-352
  • 139 Glaser S, Obst A, Koch B. et al. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis – the predictive value of exercise capacity and gas exchange efficiency. PLoS One 2013; 8: e65643
  • 140 Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis 1984; 129: S49-S55
  • 141 Jones NL, Makrides L, Hitchcock C. et al. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 1985; 131: 700-708
  • 142 Glaser S, Koch B, Ittermann T. et al. Influence of age, sex, body size, smoking, and beta blockade on key gas exchange exercise parameters in an adult population. Eur J Cardiovasc Prev Rehabil 2010; 17: 469-476
  • 143 Cooper B, Storer W. Exercise testing and interpretation. Cambridge: University Press; 2001
  • 144 Glaser S, Friedrich N, Koch B. et al. Exercise blood pressure and heart rate reference values. Heart Lung Circ 2013; 22: 661-667
  • 145 Froehlicher VF, Myers J, Follanbee WP. et al. Exercise and the heart. St. Louis: Mosby; 1993
  • 146 Gibbons RJ, Balady GJ, Bricker JT. et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 2002; 106: 1883-1892
  • 147 Andersen KL, Shepard RJ, Denolin H. et al. Fundamentals of exercise testing. Geneva: World Health Organisation; 1971: 138
  • 148 Glaser S, Ittermann T, Koch B. et al. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women. Respir Med 2013; 107: 919-926
  • 149 Huszczuk A, Whipp BJ, Wasserman K. A respiratory gas exchange simulator for routine calibration in metabolic studies. Eur Respir J 1990; 3: 465-468
  • 150 Revill SM, Morgan MD. Biological quality control for exercise testing. Thorax 2000; 55: 63-66
  • 151 Jones NL. Clinical exercise testing. 4.. Aufl. Saunders; 1997
  • 152 Wilmore JH, Stanforth PR, Turley KR. et al. Reproducibility of cardiovascular, respiratory, and metabolic responses to submaximal exercise: the HERITAGE Family Study. Med Sci Sports Exerc 1998; 30: 259-265
  • 153 Guazzi M, Bandera F, Ozemek C. et al. Cardiopulmonary Exercise Testing: What Is its Value?. J Am Coll Cardiol 2017; 70: 1618-1636
  • 154 Dumitrescu DRS. Graphical Data Display for Clinical Cardiopulmonary Exercise Testing. Ann Am Thorac Soc 2017; 14 (Suppl. 01) 10
  • 155 Hansen JE, Sun XG, Stringer WW. A simple new visualization of exercise data discloses pathophysiology and severity of heart failure. J Am Heart Assoc 2012; 1: e001883
  • 156 Schmid A, Schilter D, Fengels I. et al. Design and validation of an interpretative strategy for cardiopulmonary exercise tests. Respirology 2007; 12: 916-923
  • 157 Eschenbacher WL, Mannina A. An algorithm for the interpretation of cardiopulmonary exercise tests. Chest 1990; 97: 263-267
  • 158 Guazzi M, Adams V, Conraads V. et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012; 126: 2261-2274
  • 159 Nichols S, Taylor C, Lee Ingle L. A clinicianʼs guide to cardiopulmonary exercise testing 2: test interpretation. British Journal of Hospital Medicine 2015; 76: 281-289
  • 160 Taylor C, Nichols S, Lee Ingle L. A clinicianʼs guide to cardiopulmonary exercise testing 1: an introduction. British Journal of Hospital Medicine 2015; 76: 192-195
  • 161 Killian KJ, Leblanc P, Martin DH. et al. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis 1992; 146: 935-940
  • 162 Cotes JE, Zejda J, King B. Lung function impairment as a guide to exercise limitation in work-related lung disorders. Am Rev Respir Dis 1988; 137: 1089-1093
  • 163 OʼDonnell DE. Breathlessness in patients with chronic airflow limitation. Mechanisms and management. Chest 1994; 106: 904-912
  • 164 OʼDonnell DE, DʼArsigny C, Fitzpatrick M. et al. Exercise hypercapnia in advanced chronic obstructive pulmonary disease: the role of lung hyperinflation. Am J Respir Crit Care Med 2002; 166: 663-668
  • 165 Spiro SG, Hahn HL, Edwards RH. et al. An analysis of the physiological strain of submaximal exercise in patients with chronic obstructive bronchitis. Thorax 1975; 30: 415-425
  • 166 Lee YC, Singh B, Pang SC. et al. Radiographic (ILO) readings predict arterial oxygen desaturation during exercise in subjects with asbestosis. Occup Environ Med 2003; 60: 201-206
  • 167 Lama VN, Martinez FJ. Resting and exercise physiology in interstitial lung diseases. Clin Chest Med 2004; 25: 435-453, v
  • 168 Glaser S, Noga O, Koch B. et al. Impact of pulmonary hypertension on gas exchange and exercise capacity in patients with pulmonary fibrosis. Respir Med 2009; 103: 317-324
  • 169 Bush A, Busst CM. Cardiovascular function at rest and on exercise in patients with cryptogenic fibrosing alveolitis. Thorax 1988; 43: 276-283
  • 170 Spiro SG, Dowdeswell IR, Clark TJ. An analysis of submaximal exercise responses in patients with sarcoidosis and fibrosing alveolitis. Br J Dis Chest 1981; 75: 169-180
  • 171 Weitzenblum E, Ehrhart M, Rasaholinjanahary J. et al. Pulmonary hemodynamics in idiopathic pulmonary fibrosis and other interstitial pulmonary diseases. Respiration 1983; 44: 118-127
  • 172 Gibbons WJ, Levy RD, Nava S. et al. Subclinical cardiac dysfunction in sarcoidosis. Chest 1991; 100: 44-50
  • 173 Ponikowski P, Voors AA, Anker SD. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-2200
  • 174 Wasserman K. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. Am J Physiol 1994; 266: E519-E539
  • 175 Gargiulo P, Apostolo A, Perrone-Filardi P. et al. A non invasive estimate of dead space ventilation from exercise measurements. PLoS One 2014; 9: e87395
  • 176 Leite JJ, Mansur AJ, de Freitas HF. et al. Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. J Am Coll Cardiol 2003; 41: 2175-2181
  • 177 Sun XG, Hansen JE, Beshai JF. et al. Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol 2010; 55: 1814-1823
  • 178 Arena R, Myers J, Aslam SS. et al. Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J 2004; 147: 354-360
  • 179 Arena R, Myers J, Hsu L. et al. The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail 2007; 13: 462-469
  • 180 Cahalin LP, Chase P, Arena R. et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev 2013; 18: 79-94
  • 181 Agostoni P, Corra U, Cattadori G. et al. Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis. Int J Cardiol 2013; 167: 2710-2718
  • 182 Corra U, Agostoni P, Giordano A. et al. The metabolic exercise test data combined with Cardiac And Kidney Indexes (MECKI) score and prognosis in heart failure. A validation study. Int J Cardiol 2016; 203: 1067-1072
  • 183 Mehra MR, Canter CE, Hannan MM. et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant 2016; 35: 1-23
  • 184 Galie N, Humbert M, Vachiery JL. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). The European respiratory journal 2015; 46: 903-975
  • 185 Rosenkranz S, Ghofrani HA, Grunig E. et al. [Pulmonary Hypertension: Cologne Consensus Conference 2016]. Dtsch Med Wochenschr 2016; 141: 1778-1782
  • 186 Arena R, Lavie CJ, Milani RV. et al. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant 2010; 29: 159-173
  • 187 Janicki JS, Weber KT, Likoff MJ. et al. Exercise testing to evaluate patients with pulmonary vascular disease. Am Rev Respir Dis 1984; 129: S93-S95
  • 188 Sun XG, Hansen JE, Oudiz RJ. et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 2001; 104: 429-435
  • 189 Yasunobu Y, Oudiz RJ, Sun XG. et al. End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest 2005; 127: 1637-1646
  • 190 Hansen JE, Ulubay G, Chow BF. et al. Mixed-expired and end-tidal CO2 distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases. Chest 2007; 132: 977-983
  • 191 Sun XG, Hansen JE, Oudiz RJ. et al. Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation 2002; 105: 54-60
  • 192 Dumitrescu D, Oudiz RJ, Karpouzas G. et al. Developing pulmonary vasculopathy in systemic sclerosis, detected with non-invasive cardiopulmonary exercise testing. PLoS One 2010; 5: e14293
  • 193 Dumitrescu D, Nagel C, Kovacs G. et al. Cardiopulmonary exercise testing for detecting pulmonary arterial hypertension in systemic sclerosis. Heart 2017; 103: 774-782
  • 194 Scheidl SJ, Englisch C, Kovacs G. et al. Diagnosis of CTEPH versus IPAH using capillary to end-tidal carbon dioxide gradients. Eur Respir J 2012; 39: 119-124
  • 195 Held M, Grun M, Holl R. et al. Cardiopulmonary exercise testing to detect chronic thromboembolic pulmonary hypertension in patients with normal echocardiography. Respiration 2014; 87: 379-387
  • 196 Held M, Kolb P, Grun M. et al. Functional Characterization of Patients with Chronic Thromboembolic Disease. Respiration 2016; 91: 503-509
  • 197 Hansen JE, Wasserman K. Pathophysiology of activity limitation in patients with interstitial lung disease. Chest 1996; 109: 1566-1576
  • 198 Vonbank K, Funk GC, Marzluf B. et al. Abnormal pulmonary arterial pressure limits exercise capacity in patients with COPD. Wien Klin Wochenschr 2008; 120: 749-755
  • 199 Holverda S, Bogaard HJ, Groepenhoff H. et al. Cardiopulmonary exercise test characteristics in patients with chronic obstructive pulmonary disease and associated pulmonary hypertension. Respiration 2008; 76: 160-167
  • 200 Boerrigter BG, Bogaard HJ, Trip P. et al. Ventilatory and cardiocirculatory exercise profiles in COPD: the role of pulmonary hypertension. Chest 2012; 142: 1166-1174
  • 201 Kovacs G, Dumitrescu D, Barner A. et al. [Clinical classification and initial diagnosis of pulmonary hypertension: recommendations of the Cologne Consensus Conference 2016]. Dtsch Med Wochenschr 2016; 141: S10-S18
  • 202 Wilkens H, Konstantinides S, Lang I. et al. [Chronic thromboembolic pulmonary hypertension: Recommendations of the Cologne Consensus Conference 2016]. Dtsch Med Wochenschr 2016; 141: S62-S69
  • 203 Wensel R, Opitz CF, Anker SD. et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 2002; 106: 319-324
  • 204 Wensel R, Francis DP, Meyer FJ. et al. Incremental prognostic value of cardiopulmonary exercise testing and resting haemodynamics in pulmonary arterial hypertension. Int J Cardiol 2013; 167: 1193-1198
  • 205 Groepenhoff H, Vonk-Noordegraaf A, Boonstra A. et al. Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc 2008; 40: 1725-1732
  • 206 Oudiz RJ, Barst RJ, Hansen JE. et al. Cardiopulmonary exercise testing and six-minute walk correlations in pulmonary arterial hypertension. Am J Cardiol 2006; 97: 123-126
  • 207 Deboeck G, Scoditti C, Huez S. et al. Exercise testing to predict outcome in idiopathic versus associated pulmonary arterial hypertension. The European respiratory journal 2012; 40: 1410-1419
  • 208 Leuchte HH, Ten Freyhaus H, Gall H. et al. [Risk stratification and follow-up assessment of patients with pulmonary arterial hypertension: Recommendations of the Cologne Consensus Conference 2016]. Dtsch Med Wochenschr 2016; 141: S19-S25
  • 209 Nusair S. Interpreting the Incremental Cardiopulmonary Exercise Test. Am J Cardiol 2017; 119: 497-500
  • 210 Rozenbaum Z, Khoury S, Aviram G. et al. Discriminating Circulatory Problems From Deconditioning: Echocardiographic and Cardiopulmonary Exercise Test Analysis. Chest 2017; 151: 431-440
  • 211 Sullivan MJ, Knight JD, Higginbotham MB. et al. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation 1989; 80: 769-781
  • 212 Sullivan MJ, Hawthorne MH. Exercise intolerance in patients with chronic heart failure. Prog Cardiovasc Dis 1995; 38: 1-22
  • 213 Rehn TA, Munkvik M, Lunde PK. et al. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning?. Heart Fail Rev 2012; 17: 421-436
  • 214 Bandera F, Generati G, Pellegrino M. et al. Role of right ventricle and dynamic pulmonary hypertension on determining DeltaVO2/DeltaWork Rate flattening: insights from cardiopulmonary exercise test combined with exercise echocardiography. Circ Heart Fail 2014; 7: 782-790
  • 215 Guazzi M, Villani S, Generati G. et al. Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes. JACC Heart Fail 2016; 4: 625-635
  • 216 Pellikka PA, Nagueh SF, Elhendy AA. et al. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 2007; 20: 1021-1041
  • 217 Sicari R, Nihoyannopoulos P, Evangelista A. et al. Stress Echocardiography Expert Consensus Statement--Executive Summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 2009; 30: 278-289
  • 218 Sicari R, Cortigiani L. The clinical use of stress echocardiography in ischemic heart disease. Cardiovasc Ultrasound 2017; 15: 7
  • 219 Nagy AI, Sahlen A, Manouras A. et al. Combination of contrast-enhanced wall motion analysis and myocardial deformation imaging during dobutamine stress echocardiography. Eur Heart J Cardiovasc Imaging 2015; 16: 88-95
  • 220 Vamvakidou A, Karogiannis N, Tzalamouras V. et al. Prognostic usefulness of contemporary stress echocardiography in patients with left bundle branch block and impact of contrast use in improving prediction of outcome. Eur Heart J Cardiovasc Imaging 2017; 18: 415-421
  • 221 Himelman RB, Stulbarg M, Kircher B. et al. Noninvasive evaluation of pulmonary artery pressure during exercise by saline-enhanced Doppler echocardiography in chronic pulmonary disease. Circulation 1989; 79: 863-871
  • 222 Rudski LG, Gargani L, Armstrong WF. et al. Stressing the Cardiopulmonary Vascular System: The Role of Echocardiography. J Am Soc Echocardiogr 2018; 31: 527-550 e511
  • 223 Naji P, Griffin BP, Asfahan F. et al. Predictors of long-term outcomes in patients with significant myxomatous mitral regurgitation undergoing exercise echocardiography. Circulation 2014; 129: 1310-1319
  • 224 Garbi M, Chambers J, Vannan MA. et al. Valve Stress Echocardiography: A Practical Guide for Referral, Procedure, Reporting, and Clinical Implementation of Results From the HAVEC Group. JACC Cardiovasc Imaging 2015; 8: 724-736
  • 225 Chambers JB. The echocardiography of replacement heart valves. Echo Res Pract 2016; 3: R35-R43
  • 226 Clavel MA. Echocardiographic Assessment of Aortic Stenosis Severity: Do Not Rely on a Single Parameter. J Am Heart Assoc 2016; 5 DOI: 10.1161/JAHA.116.004680.
  • 227 Liu B, Edwards NC, Ray S. et al. Timing surgery in mitral regurgitation: defining risk and optimising intervention using stress echocardiography. Echo Res Pract 2016; 3: R45-R55
  • 228 Yildirim A, Sedef TF, Pinarli FG. et al. Early diagnosis of anthracycline toxicity in asymptomatic long-term survivors: dobutamine stress echocardiography and tissue Doppler velocities in normal and abnormal myocardial wall motion. Eur J Echocardiogr 2010; 11: 814-822
  • 229 Chan AK, Govindarajan G, Del Rosario ML. et al. Dobutamine stress echocardiography Doppler estimation of cardiac diastolic function: a simultaneous catheterization correlation study. Echocardiography 2011; 28: 442-447
  • 230 Takagi T. Diastolic stress echocardiography. J Echocardiogr 2017; DOI: 10.1007/s12574-017-0335-7.
  • 231 Agricola E, Picano E, Oppizzi M. et al. Assessment of stress-induced pulmonary interstitial edema by chest ultrasound during exercise echocardiography and its correlation with left ventricular function. J Am Soc Echocardiogr 2006; 19: 457-463
  • 232 Wijeysundera DN, Beattie WS, Austin PC. et al. Non-invasive cardiac stress testing before elective major non-cardiac surgery: population based cohort study. BMJ 2010; 340: b5526
  • 233 Grunig E, Henn P, D'Andrea A. et al. Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging 2013; 6: 117-124
  • 234 Sharma T, Lau EM, Choudhary P. et al. Dobutamine stress for evaluation of right ventricular reserve in pulmonary arterial hypertension. The European respiratory journal 2015; 45: 700-708
  • 235 Bossone E, DʼAndrea A, DʼAlto M. et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr 2013; 26: 1-14
  • 236 Singhal S, Yousuf MA, Weintraub NL. et al. Use of bicycle exercise echocardiography for unexplained exertional dyspnea. Clin Cardiol 2009; 32: 302-306
  • 237 Poldermans D, Bax JJ, Boersma E. et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J 2009; 30: 2769-2812
  • 238 Grunig E, Weissmann S, Ehlken N. et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 2009; 119: 1747-1757
  • 239 Kusunose K, Yamada H, Hotchi J. et al. Prediction of Future Overt Pulmonary Hypertension by 6-Min Walk Stress Echocardiography in Patients With Connective Tissue Disease. J Am Coll Cardiol 2015; 66: 376-384
  • 240 Kusunose K, Yamada H. Rest and exercise echocardiography for early detection of pulmonary hypertension. J Echocardiogr 2016; 14: 2-12
  • 241 Codullo V, Caporali R, Cuomo G. et al. Stress Doppler echocardiography in systemic sclerosis: evidence for a role in the prediction of pulmonary hypertension. Arthritis Rheum 2013; 65: 2403-2411
  • 242 Lau EM, Manes A, Celermajer DS. et al. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: time to move forward. Eur Heart J 2011; 32: 2489-2498
  • 243 Kovacs G, Berghold A, Scheidl S. et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34: 888-894
  • 244 Herve P, Lau EM, Sitbon O. et al. Criteria for diagnosis of exercise pulmonary hypertension. The European respiratory journal 2015; 46: 728-737
  • 245 Hoeper MM, Bogaard HJ, Condliffe R. et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013; 62: D42-D50
  • 246 Rosenkranz S, Behr J, Ewert R. et al. [Right heart catheterization in pulmonary hypertension]. Dtsch Med Wochenschr 2011; 136: 2601-2616
  • 247 Hickam JB, Cargill WH. Effect of Exercise on Cardiac Output and Pulmonary Arterial Pressure in Normal Persons and in Patients with Cardiovascular Disease and Pulmonary Emphysema. J Clin Invest 1948; 27: 10-23
  • 248 Riley RL, Himmelstein A. et al. Studies of the pulmonary circulation at rest and during exercise in normal individuals and in patients with chronic pulmonary disease. Am J Physiol 1948; 152: 372-382
  • 249 Hatano SST. Primary pulmonary hypertension. Report on a WHO meeting. Geneva: 1973
  • 250 Badesch DB, Champion HC, Sanchez MA. et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54: S55-S66
  • 251 Kovacs G, Olschewski A, Berghold A. et al. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. The European respiratory journal 2012; 39: 319-328
  • 252 LeVarge BL, Pomerantsev E, Channick RN. Reliance on end-expiratory wedge pressure leads to misclassification of pulmonary hypertension. The European respiratory journal 2014; 44: 425-434
  • 253 Naeije R, Chesler N. Pulmonary circulation at exercise. Compr Physiol 2012; 2: 711-741
  • 254 Agostoni P, Vignati C, Gentile P. et al. Reference Values for Peak Exercise Cardiac Output in Healthy Individuals. Chest 2017; 151: 1329-1337
  • 255 Naeije R, Vanderpool R, Dhakal BP. et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med 2013; 187: 576-583
  • 256 Maron BA, Cockrill BA, Waxman AB. et al. The invasive cardiopulmonary exercise test. Circulation 2013; 127: 1157-1164
  • 257 Borlaug BA, Nishimura RA, Sorajja P. et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 2010; 3: 588-595
  • 258 Huis In ʼt Veld AE, de Man FS, van Rossum AC. et al. How to diagnose heart failure with preserved ejection fraction: the value of invasive stress testing. Neth Heart J 2016; 24: 244-251
  • 259 Kessler R, Faller M, Weitzenblum E. et al. “Natural history” of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med 2001; 164: 219-224
  • 260 Ewert R, Olschewski H, Ghofrani HA. et al. [Early diagnosis and therapy in pulmonary hypertension--aspects of a vision]. Pneumologie 2013; 67: 376-387
  • 261 Kovacs G, Maier R, Aberer E. et al. Borderline pulmonary arterial pressure is associated with decreased exercise capacity in scleroderma. Am J Respir Crit Care Med 2009; 180: 881-886
  • 262 Burgess MI, Jenkins C, Sharman JE. et al. Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 2006; 47: 1891-1900
  • 263 Gopalan D, Delcroix M, Held M. Diagnosis of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26 DOI: 10.1183/16000617.0108-2016.
  • 264 Kovacs G, Avian A, Olschewski A. et al. Zero reference level for right heart catheterisation. The European respiratory journal 2013; 42: 1586-1594
  • 265 Kovacs G, Avian A, Pienn M. et al. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med 2014; 190: 252-257
  • 266 Naeije R, Boerrigter BG. Pulmonary hypertension at exercise in COPD: does it matter?. The European respiratory journal 2013; 41: 1002-1004
  • 267 Boerrigter BG, Waxman AB, Westerhof N. et al. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. The European respiratory journal 2014; 43: 1316-1325
  • 268 Berry NC, Manyoo A, Oldham WM. et al. Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ 2015; 5: 610-618
  • 269 Kovacs G, Herve P, Barbera JA. et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017; 50 DOI: 10.1183/13993003.00578-2017. [corrected article online]
  • 270 Burnett DM, Burns S, Merritt S. et al. Prevalence of Exercise-Induced Bronchoconstriction Measured by Standardized Testing in Healthy College Athletes. Respir Care 2016; 61: 571-576
  • 271 Weiler JM, Bonini S, Coifman R. et al. American Academy of Allergy, Asthma & Immunology Work Group report: exercise-induced asthma. J Allergy Clin Immunol 2007; 119: 1349-1358
  • 272 Depiazzi J, Everard ML. Dysfunctional breathing and reaching oneʼs physiological limit as causes of exercise-induced dyspnoea. Breathe (Sheff) 2016; 12: 120-129
  • 273 Anderson SD. ‘Indirect’ challenges from science to clinical practice. Eur Clin Respir J 2016; 3: 31096
  • 274 Parsons JP, Hallstrand TS, Mastronarde JG. et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med 2013; 187: 1016-1027
  • 275 Randolph C. Pediatric exercise-induced bronchoconstriction: contemporary developments in epidemiology, pathogenesis, presentation, diagnosis, and therapy. Curr Allergy Asthma Rep 2013; 13: 662-671
  • 276 Criee CP, Baur X, Berdel D. et al. [Standardization of spirometry: 2015 update. Published by German Atemwegsliga, German Respiratory Society and German Society of Occupational and Environmental Medicine]. Pneumologie 2015; 69: 147-164
  • 277 Beatmungsmedizin DAuDGfPu. Empfehlungen zur Ganzkörperplethysmographie (Bodyplethysmographie). Dustri Verlag; 2009
  • 278 Carlsen KH, Anderson SD, Bjermer L. et al. Treatment of exercise-induced asthma, respiratory and allergic disorders in sports and the relationship to doping: Part II of the report from the Joint Task Force of European Respiratory Society (ERS) and European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA(2)LEN. Allergy 2008; 63: 492-505
  • 279 Sorichter S. Athleten, Asthma und Anstrenung. Pneumologe 2013; 10: 400-408
  • 280 Carlsen KH. The breathless adolescent asthmatic athlete. The European respiratory journal 2011; 38: 713-720
  • 281 Worth H, Meyer A, Folgering H. et al. [Recommendations of the German Respiratory League on sports and physical training for patients with obstructive respiratory tract diseases]. Pneumologie 2000; 54: 61-67
  • 282 Tetzlaff K, Klingmann C, Muth CM. et al. Checkliste Tauchtauglichkeit. Stuttgart: Gentner; 2009
  • 283 Balady GJ, Berra KA, Golding LA. et al. Exercise prescription for cardiac patients. In: Frankling BA, Whaley MH, Howley ET. , Hrsg. ACSMʼs Guidelines for Exercise Testing and Prescription. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott, Williams & Wilkins; 2000: 165-169
  • 284 Stilgenbauer F, Reißnecker S, Steinacker JM. Herzfrequenzvorgaben für Ausdauertraining von Herzpatienten. Dtsch Z Sportmed 2003; 53: 228-229
  • 285 Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 2014; 48: 1227-1234
  • 286 Ellingsen O, Halle M, Conraads V. et al. High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction. Circulation 2017; 135: 839-849
  • 287 Simmons DN, Berry MJ, Hayes SI. et al. The relationship between %HRpeak and %VO2peak in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 2000; 32: 881-886
  • 288 Berry MJ, Woodard CM. Chronic obstructive pulmonary disease. In: Ehrmann JK, Gordon PM, Visich PS. et al., Hrsg. Clinical Exercise Physiology: Human Kinetics. 2003: 339-366
  • 289 Garvey C, Bayles MP, Hamm LF. et al. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: AN OFFICIAL STATEMENT FROM THE AMERICAN ASSOCIATION OF CARDIOVASCULAR AND PULMONARY REHABILITATION. J Cardiopulm Rehabil Prev 2016; 36: 75-83
  • 290 Bolton CE, Bevan-Smith EF, Blakey JD. et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. Thorax 2013; 68 (Suppl. 02) ii1-30
  • 291 Holland AE, Dowman LM, Hill CJ. Principles of rehabilitation and reactivation: interstitial lung disease, sarcoidosis and rheumatoid disease with respiratory involvement. Respiration 2015; 89: 89-99
  • 292 Ehlken N, Lichtblau M, Klose H. et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J 2016; 37: 35-44
  • 293 Mereles D, Ehlken N, Kreuscher S. et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006; 114: 1482-1489
  • 294 Friedmann-Bette B. Die Spiroergometrie in der sportmedizinischen Leistungsdiagnostik. Deutsch Z Sportmed 2011; 62: 10-15
  • 295 Friedmann-Bette B. Leistungsdiagnostik und Trainingssteuerung. Therapeutische Umschau 1998; 55: 246-250
  • 296 ArbMedVV. 2016 www.gesetze-im-internet.de/bundesrecht/arbmedvv/gesamt.pdf
  • 297 Unfallversicherung DG. DGUV Grundsätze für arbeitsmedizinische Untersuchungen. Stuttgart: Gentner; 2014
  • 298 Reiterer W. Kriterien der körperlichen Leistungsfähigkeit. Wien Med Wschr 1977; 127 (Suppl. 42) 1-19
  • 299 Chatterjee MSG. Zur Diskussion gestellt: Aktualisierter Leitfaden für die Ergometrie im Rahmen arbeitsmedizinischer Untersuchungen. Arbeitsmed Sozialmed Umweltmed 2017; 52: 913-921
  • 300 Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 153-156
  • 301 Koch B, Schaper C, Ittermann T. et al. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur Respir J 2009; 33: 389-397
  • 302 Preisser AM, Ochmann U. [Cardiopulmonary exercise testing in occupational medical fitness examination and assessment]. Pneumologie 2011; 65: 662-670
  • 303 Roffi M, Patrono C, Collet JP. et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 267-315
  • 304 Rentenversicherung D. Leitlinie zur sozialmedizinischen Beurteilung der Leistungsfähigkeit bei chronisch obstruktiver Lungenkrankheit (COPD) und Asthma bronchiale. 2010 http://www.deutsche-rentenversicherung.de/Allgemein/de/Inhalt/3_Infos_fuer_Experten/01_sozialmedizin_forschung/downloads/sozmed/begutachtung/leitlinie_leistungsfaehigkeit_lunge_langfassung_pdf.pdf?__blob=publicationFile&v=6
  • 305 Ainsworth BE, Haskell WL, Herrmann SD. et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc 2011; 43: 1575-1581
  • 306 Preisser AM, Zhou L, Velasco Garrido M. et al. Measured by the oxygen uptake in the field, the work of refuse collectors is particularly hard work: Are the limit values for physical endurance workload too low?. Int Arch Occup Environ Health 2016; 89: 211-220
  • 307 Rutenfranz JHT, Ilmarinen J, Klimmer F. Beurteilung der Eignung zu schwerer körperlicher Arbeit. In: Drasche HEH, Florian HJ. et al., Hrsg. Ökologischer Kurs: Teil Arbeitsmedizin. Stuttgart: Enke; 1976: 12-24
  • 308 Jorgensen K. Permissible loads based on energy expenditure measurements. Ergonomics 1985; 28: 365-369
  • 309 Ilmarinen J, Louhevaara V, Korhonen O. et al. Changes in maximal cardiorespiratory capacity among aging municipal employees. Scand J Work Environ Health 1991; 17 (Suppl. 01) 99-109
  • 310 Dube PA, Imbeau D, Dubeau D. et al. Prediction of work metabolism from heart rate measurements in forest work: some practical methodological issues. Ergonomics 2015; 58: 2040-2056
  • 311 Wu HC, Wang MJ. Relationship between maximum acceptable work time and physical workload. Ergonomics 2002; 45: 280-289
  • 312 Salzwedel A, Reibis R, Wegscheider K. et al. Cardiopulmonary exercise testing is predictive of return to work in cardiac patients after multicomponent rehabilitation. Clin Res Cardiol 2016; 105: 257-267
  • 313 Unfallversicherung DG. Reichenhaller Empfehlung. Empfehlung für die Begutachtung der Berufskrankheiten der Nrn. 1315 (ohne Alveolitis), 4301 und 4302 der Anlage zur BKV. 2012 http://publikationen.dguv.de/dguv/pdf/10002/reichenhallneu.pdf
  • 314 Unfallversicherung DG. Bochumer Empfehlung. Empfehlung für die Begutachtung von Quarzstaublungenerkrankungen (Silikosen). 2011 http://publikationen.dguv.de/dguv/pdf/10002/bochum_neu.pdf
  • 315 James PT, Leach R, Kalamara E. et al. The worldwide obesity epidemic. Obes Res 2001; 9 (Suppl. 04) 228S-233S
  • 316 McClean KM, Kee F, Young IS. et al. Obesity and the lung: 1. Epidemiology. Thorax 2008; 63: 649-654
  • 317 Volzke H, Ittermann T, Schmidt CO. et al. Prevalence trends in lifestyle-related risk factors. Dtsch Arztebl Int 2015; 112: 185-192
  • 318 Littleton SW. Impact of obesity on respiratory function. Respirology 2012; 17: 43-49
  • 319 Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology 2015; 20: 715-721
  • 320 Melo LC, Silva MA, Calles AC. Obesity and lung function: a systematic review. Einstein (Sao Paulo) 2014; 12: 120-125
  • 321 Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol (1985) 2010; 108: 206-211
  • 322 Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest 2006; 130: 827-833
  • 323 Sampson MG, Grassino AE. Load compensation in obese patients during quiet tidal breathing. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 1269-1276
  • 324 Wang LY, Cerny FJ, Kufel TJ. et al. Simulated obesity-related changes in lung volume increases airway responsiveness in lean, nonasthmatic subjects. Chest 2006; 130: 834-840
  • 325 Saydain G, Beck KC, Decker PA. et al. Clinical significance of elevated diffusing capacity. Chest 2004; 125: 446-452
  • 326 Oppenheimer BW, Berger KI, Rennert DA. et al. Effect of circulatory congestion on the components of pulmonary diffusing capacity in morbid obesity. Obesity (Silver Spring) 2006; 14: 1172-1180
  • 327 Biring MS, Lewis MI, Liu JT. et al. Pulmonary physiologic changes of morbid obesity. Am J Med Sci 1999; 318: 293-297
  • 328 Sutherland TJ, McLachlan CR, Sears MR. et al. The relationship between body fat and respiratory function in young adults. The European respiratory journal 2016; 48: 734-747
  • 329 Zavorsky GS, Hoffman SL. Pulmonary gas exchange in the morbidly obese. Obes Rev 2008; 9: 326-339
  • 330 Babb TG, Wyrick BL, DeLorey DS. et al. Fat distribution and end-expiratory lung volume in lean and obese men and women. Chest 2008; 134: 704-711
  • 331 Hickson DA, Liu J, Bidulescu A. et al. Pericardial fat is associated with impaired lung function and a restrictive lung pattern in adults: the Jackson Heart Study. Chest 2011; 140: 1567-1573
  • 332 Lazarus R, Sparrow D, Weiss ST. Effects of obesity and fat distribution on ventilatory function: the normative aging study. Chest 1997; 111: 891-898
  • 333 Rasslan Z, Stirbulov R, Junior RS. et al. The impact of abdominal adiposity measured by sonography on the pulmonary function of pre-menopausal females. Multidiscip Respir Med 2015; 10: 23
  • 334 Mafort TT, Rufino R, Costa CH. et al. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med 2016; 11: 28
  • 335 Held M, Mittnacht M, Kolb M. et al. Pulmonary and cardiac function in asymptomatic obese subjects and changes following a structured weight reduction program: a prospective observational study. PLoS One 2014; 9: e107480
  • 336 Lin CK, Lin CC. Work of breathing and respiratory drive in obesity. Respirology 2012; 17: 402-411
  • 337 Rivas E, Arismendi E, Agusti A. et al. Ventilation/Perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery. Chest 2015; 147: 1127-1134
  • 338 Fenger RV, Gonzalez-Quintela A, Vidal C. et al. The longitudinal relationship of changes of adiposity to changes in pulmonary function and risk of asthma in a general adult population. BMC pulmonary medicine 2014; 14: 208
  • 339 Lavie CJ, McAuley PA, Church TS. et al. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol 2014; 63: 1345-1354
  • 340 Friedman SE, Andrus BW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obes 2012; 2012: 505274
  • 341 Babb TG, Ranasinghe KG, Comeau LA. et al. Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing. Am J Respir Crit Care Med 2008; 178: 116-123
  • 342 Kress JP, Pohlman AS, Alverdy J. et al. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med 1999; 160: 883-886
  • 343 Ora J, Laveneziana P, Ofir D. et al. Combined effects of obesity and chronic obstructive pulmonary disease on dyspnea and exercise tolerance. Am J Respir Crit Care Med 2009; 180: 964-971
  • 344 O'Donnell DE, Ciavaglia CE, Neder JA. When obesity and chronic obstructive pulmonary disease collide. Physiological and clinical consequences. Ann Am Thorac Soc 2014; 11: 635-644
  • 345 Lorenzo S, Babb TG. Ventilatory responses at peak exercise in endurance-trained obese adults. Chest 2013; 144: 1330-1339
  • 346 Miller WM, Spring TJ, Zalesin KC. et al. Lower than predicted resting metabolic rate is associated with severely impaired cardiorespiratory fitness in obese individuals. Obesity (Silver Spring) 2012; 20: 505-511
  • 347 Maciejczyk M, Wiecek M, Szymura J. et al. The influence of increased body fat or lean body mass on aerobic performance. PLoS One 2014; 9: e95797
  • 348 Hansen D, Marinus N, Remans M. et al. Exercise tolerance in obese vs. lean adolescents: a systematic review and meta-analysis. Obes Rev 2014; 15: 894-904
  • 349 Dreher M, Kabitz HJ. Impact of obesity on exercise performance and pulmonary rehabilitation. Respirology 2012; 17: 899-907
  • 350 Bernhardt V, Babb TG. Exertional dyspnoea in obesity. Eur Respir Rev 2016; 25: 487-495
  • 351 Arena R, Cahalin LP. Evaluation of cardiorespiratory fitness and respiratory muscle function in the obese population. Prog Cardiovasc Dis 2014; 56: 457-464
  • 352 Maatman RC, Spruit MA, van Melick PP. et al. Effects of obesity on weight-bearing versus weight-supported exercise testing in patients with COPD. Respirology 2016; 21: 483-488
  • 353 Ciavaglia CE, Guenette JA, Ora J. et al. Does exercise test modality influence dyspnoea perception in obese patients with COPD?. The European respiratory journal 2014; 43: 1621-1630
  • 354 Evans RA, Dolmage TE, Robles PG. et al. Do field walking tests produce similar cardiopulmonary demands to an incremental treadmill test in obese individuals with treated OSA?. Chest 2014; 146: 81-87
  • 355 Oliver N, Onofre T, Carlos R. et al. Ventilatory and Metabolic Response in the Incremental Shuttle and 6-Min Walking Tests Measured by Telemetry in Obese Patients Prior to Bariatric Surgery. Obes Surg 2015; 25: 1658-1665
  • 356 Jurgensen SP, Trimer R, Dourado VZ. et al. Shuttle walking test in obese women: test-retest reliability and concurrent validity with peak oxygen uptake. Clin Physiol Funct Imaging 2015; 35: 120-126
  • 357 Di Thommazo-Luporini L, Jurgensen SP, Castello-Simoes V. et al. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women. Rev Bras Fisioter 2012; 16: 469-478
  • 358 Hothi SS, Tan DK, Partridge G. et al. Is low VO2max/kg in obese heart failure patients indicative of cardiac dysfunction?. Int J Cardiol 2015; 184: 755-762
  • 359 Horwich TB, Leifer ES, Brawner CA. et al. The relationship between body mass index and cardiopulmonary exercise testing in chronic systolic heart failure. Am Heart J 2009; 158: S31-36
  • 360 Gallagher MJ, Franklin BA, Ehrman JK. et al. Comparative impact of morbid obesity vs heart failure on cardiorespiratory fitness. Chest 2005; 127: 2197-2203
  • 361 Ora J, Laveneziana P, Wadell K. et al. Effect of obesity on respiratory mechanics during rest and exercise in COPD. J Appl Physiol (1985) 2011; 111: 10-19
  • 362 Aiello M, Teopompi E, Tzani P. et al. Maximal exercise in obese patients with COPD: the role of fat free mass. BMC pulmonary medicine 2014; 14: 96
  • 363 Laviolette L, Sava F, O'Donnell DE. et al. Effect of obesity on constant workrate exercise in hyperinflated men with COPD. BMC pulmonary medicine 2010; 10: 33
  • 364 Kristensen SD, Knuuti J, Saraste A. et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur J Anaesthesiol 2014; 31: 517-573
  • 365 Arozullah AM, Daley J, Henderson WG. et al. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg 2000; 232: 242-253
  • 366 Fleisher LA, Beckman JA, Brown KA. et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Circulation 2007; 116: e418-e499
  • 367 Schaefer P, Meyer-Erkelenz JD, Effert S. [Pulmonary function and operability]. Dtsch Med Wochenschr 1978; 103: 123-129
  • 368 Older P, Smith R, Courtney P. et al. Preoperative evaluation of cardiac failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest 1993; 104: 701-704
  • 369 Older P, Hall A. Clinical review: how to identify high-risk surgical patients. Crit Care 2004; 8: 369-372
  • 370 Snowden CP, Prentis JM, Anderson HL. et al. Submaximal cardiopulmonary exercise testing predicts complications and hospital length of stay in patients undergoing major elective surgery. Ann Surg 2010; 251: 535-541
  • 371 Moran J, Wilson F, Guinan E. et al. Role of cardiopulmonary exercise testing as a risk-assessment method in patients undergoing intra-abdominal surgery: a systematic review. Br J Anaesth 2016; 116: 177-191
  • 372 Goodyear SJ, Yow H, Saedon M. et al. Risk stratification by pre-operative cardiopulmonary exercise testing improves outcomes following elective abdominal aortic aneurysm surgery: a cohort study. Perioper Med (Lond) 2013; 2: 10
  • 373 Hartley RA, Pichel AC, Grant SW. et al. Preoperative cardiopulmonary exercise testing and risk of early mortality following abdominal aortic aneurysm repair. Br J Surg 2012; 99: 1539-1546
  • 374 Grant SW, Hickey GL, Wisely NA. et al. Cardiopulmonary exercise testing and survival after elective abdominal aortic aneurysm repairdagger. Br J Anaesth 2015; 114: 430-436
  • 375 West MA, Parry MG, Lythgoe D. et al. Cardiopulmonary exercise testing for the prediction of morbidity risk after rectal cancer surgery. Br J Surg 2014; 101: 1166-1172
  • 376 Brutsche MH, Spiliopoulos A, Bolliger CT. et al. Exercise capacity and extent of resection as predictors of surgical risk in lung cancer. Eur Respir J 2000; 15: 828-832
  • 377 Win T, Jackson A, Sharples L. et al. Cardiopulmonary exercise tests and lung cancer surgical outcome. Chest 2005; 127: 1159-1165
  • 378 Loewen GM, Watson D, Kohman L. et al. Preoperative exercise Vo2 measurement for lung resection candidates: results of Cancer and Leukemia Group B Protocol 9238. J Thorac Oncol 2007; 2: 619-625
  • 379 Benzo R, Kelley GA, Recchi L. et al. Complications of lung resection and exercise capacity: a meta-analysis. Respir Med 2007; 101: 1790-1797
  • 380 Brunelli A, Belardinelli R, Refai M. et al. Peak oxygen consumption during cardiopulmonary exercise test improves risk stratification in candidates to major lung resection. Chest 2009; 135: 1260-1267
  • 381 Holden DA, Rice TW, Stelmach K. et al. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. Chest 1992; 102: 1774-1779
  • 382 Markos J, Mullan BP, Hillman DR. et al. Preoperative assessment as a predictor of mortality and morbidity after lung resection. Am Rev Respir Dis 1989; 139: 902-910
  • 383 Pierce RJ, Copland JM, Sharpe K. et al. Preoperative risk evaluation for lung cancer resection: predicted postoperative product as a predictor of surgical mortality. Am J Respir Crit Care Med 1994; 150: 947-955
  • 384 Brunelli A, Refai M, Xiume F. et al. Performance at symptom-limited stair-climbing test is associated with increased cardiopulmonary complications, mortality, and costs after major lung resection. Ann Thorac Surg 2008; 86: 240-247
  • 385 Koegelenberg CF, Diacon AH, Irani S. et al. Stair climbing in the functional assessment of lung resection candidates. Respiration 2008; 75: 374-379
  • 386 Brunelli A, Salati M. Preoperative evaluation of lung cancer: predicting the impact of surgery on physiology and quality of life. Curr Opin Pulm Med 2008; 14: 275-281
  • 387 Brunelli A, Charloux A, Bolliger CT. et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J 2009; 34: 17-41
  • 388 Brunelli A, Kim AW, Berger KI. et al. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143: e166S-e190S
  • 389 Ukena Dea. S3-Leitlinie Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms. Langversion. 2018 www.awmf.org
  • 390 Lee TH, Marcantonio ER, Mangione CM. et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999; 100: 1043-1049
  • 391 Lim E, Beckles M, Warburton C. et al. Cardiopulmonary exercise testing for the selection of patients undergoing surgery for lung cancer: friend or foe?. Thorax 2010; 65: 847-849
  • 392 Brunelli A, Pompili C, Berardi R. et al. Performance at preoperative stair-climbing test is associated with prognosis after pulmonary resection in stage I non-small cell lung cancer. Ann Thorac Surg 2012; 93: 1796-1800
  • 393 Ribas J, Diaz O, Barbera JA. et al. Invasive exercise testing in the evaluation of patients at high-risk for lung resection. The European respiratory journal 1998; 12: 1429-1435
  • 394 Matsuoka H, Nishio W, Sakamoto T. et al. Prediction of morbidity after lung resection with risk factors using treadmill exercise test. Eur J Cardiothorac Surg 2004; 26: 480-482
  • 395 Choong CK, Meyers BF, Battafarano RJ. et al. Lung cancer resection combined with lung volume reduction in patients with severe emphysema. J Thorac Cardiovasc Surg 2004; 127: 1323-1331
  • 396 Liesker JJ, Wijkstra PJ, Ten HackenNH. et al. A systematic review of the effects of bronchodilators on exercise capacity in patients with COPD. Chest 2002; 121: 597-608
  • 397 Oga T, Nishimura K, Tsukino M. et al. The effects of oxitropium bromide on exercise performance in patients with stable chronic obstructive pulmonary disease. A comparison of three different exercise tests. Am J Respir Crit Care Med 2000; 161: 1897-1901
  • 398 Weiner P, Magadle R, Berar-Yanay N. et al. The cumulative effect of long-acting bronchodilators, exercise, and inspiratory muscle training on the perception of dyspnea in patients with advanced COPD. Chest 2000; 118: 672-678
  • 399 Boyd G, Morice AH, Pounsford JC. et al. An evaluation of salmeterol in the treatment of chronic obstructive pulmonary disease (COPD). The European respiratory journal 1997; 10: 815-821
  • 400 Cazzola M, Biscione GL, Pasqua F. et al. Use of 6-min and 12-min walking test for assessing the efficacy of formoterol in COPD. Respir Med 2008; 102: 1425-1430
  • 401 Okudan N, Gok M, Gokbel H. et al. Single dose of tiotropium improves the 6-minute walk distance in chronic obstructive pulmonary disease. Lung 2006; 184: 201-204
  • 402 Boeselt T, Nell C, Lutteken L. et al. Benefits of High-Intensity Exercise Training to Patients with Chronic Obstructive Pulmonary Disease: A Controlled Study. Respiration 2017; 93: 301-310
  • 403 Hopkinson NS, Toma TP, Hansell DM. et al. Effect of bronchoscopic lung volume reduction on dynamic hyperinflation and exercise in emphysema. Am J Respir Crit Care Med 2005; 171: 453-460
  • 404 Bradley JM, Lasserson T, Elborn S. et al. A systematic review of randomized controlled trials examining the short-term benefit of ambulatory oxygen in COPD. Chest 2007; 131: 278-285
  • 405 Puente-Maestu L, Sanz ML, Sanz P. et al. Comparison of effects of supervised versus self-monitored training programmes in patients with chronic obstructive pulmonary disease. The European respiratory journal 2000; 15: 517-525
  • 406 Casaburi R, Porszasz J, Burns MR. et al. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 155: 1541-1551
  • 407 Maltais F, LeBlanc P, Jobin J. et al. Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 155: 555-561
  • 408 Troosters T, Casaburi R, Gosselink R. et al. Pulmonary rehabilitation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 172: 19-38
  • 409 Aguilaniu B. Impact of bronchodilator therapy on exercise tolerance in COPD. Int J Chron Obstruct Pulmon Dis 2010; 5: 57-71
  • 410 Macchia A, Marchioli R, Tognoni G. et al. Systematic review of trials using vasodilators in pulmonary arterial hypertension: why a new approach is needed. Am Heart J 2010; 159: 245-257
  • 411 Mainguy V, Malenfant S, Neyron AS. et al. Repeatability and responsiveness of exercise tests in pulmonary arterial hypertension. The European respiratory journal 2013; 42: 425-434
  • 412 de Man FS, Handoko ML, Groepenhoff H. et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. The European respiratory journal 2009; 34: 669-675
  • 413 Mainguy V, Maltais F, Saey D. et al. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J Cardiopulm Rehabil Prev 2010; 30: 319-323
  • 414 Chan L, Chin LMK, Kennedy M. et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest 2013; 143: 333-343
  • 415 Grunig E, Lichtblau M, Ehlken N. et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. The European respiratory journal 2012; 40: 84-92
  • 416 Hirashiki A, Adachi S, Nakano Y. et al. Circulatory power and ventilatory power over time under goal-oriented sequential combination therapy for pulmonary arterial hypertension. Pulm Circ 2017; 7: 448-454
  • 417 Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev 2014; DOI: 10.1002/14651858.CD006322.pub3.
  • 418 Holland A, Hill C. Physical training for interstitial lung disease. Cochrane Database Syst Rev 2008; DOI: 10.1002/14651858.CD006322.pub2.
  • 419 Noble PW, Albera C, Bradford WZ. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011; 377: 1760-1769
  • 420 Arizono S, Taniguchi H, Sakamoto K. et al. Endurance time is the most responsive exercise measurement in idiopathic pulmonary fibrosis. Respir Care 2014; 59: 1108-1115
  • 421 Jackson RM, Gomez-Marin OW, Ramos CF. et al. Exercise limitation in IPF patients: a randomized trial of pulmonary rehabilitation. Lung 2014; 192: 367-376
  • 422 Vainshelboim B, Oliveira J, Yehoshua L. et al. Exercise training-based pulmonary rehabilitation program is clinically beneficial for idiopathic pulmonary fibrosis. Respiration 2014; 88: 378-388
  • 423 McCarthy B, Casey D, Devane D. et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015; DOI: 10.1002/14651858.CD003793.pub3.
  • 424 Spruit MA, Singh SJ, Garvey C. et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188: e13-64
  • 425 Puhan MA, Siebeling L, Zoller M. et al. Simple functional performance tests and mortality in COPD. The European respiratory journal 2013; 42: 956-963
  • 426 Rochester CL, Vogiatzis I, Holland AE. et al. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing Implementation, Use, and Delivery of Pulmonary Rehabilitation. American journal of respiratory and critical care medicine 2015; 192: 1373-1386
  • 427 Gloeckl R, Marinov B, Pitta F. Practical recommendations for exercise training in patients with COPD. Eur Respir Rev 2013; 22: 178-186
  • 428 Gloeckl R, Halle M, Kenn K. Interval versus continuous training in lung transplant candidates: a randomized trial. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 2012; 31: 934-941
  • 429 Jones SE, Kon SS, Canavan JL. et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax 2013; 68: 1015-1020
  • 430 Bohannon RW. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept Mot Skills 2006; 103: 215-222
  • 431 Strassmann A, Steurer-Stey C, Lana KD. et al. Population-based reference values for the 1-min sit-to-stand test. Int J Public Health 2013; 58: 949-953
  • 432 Vaidya T, de Bisschop C, Beaumont M. et al. Is the 1-minute sit-to-stand test a good tool for the evaluation of the impact of pulmonary rehabilitation? Determination of the minimal important difference in COPD. International journal of chronic obstructive pulmonary disease 2016; 11: 2609-2616
  • 433 Magnussen H, Kirsten AM, Kohler D. et al. [Guidelines for long-term oxygen therapy. German Society for Pneumology and Respiratory Medicine]. Pneumologie 2008; 62: 748-756
  • 434 Naeije R, Saggar R, Badesch D. et al. Exercise-induced pulmonary hypertension. Chest 2018; 154: 10-15
  • 435 Preisser AM, Velasco GM, Bittner C. et al. Gradual versus continuous increase of load in ergometric tests: Are the results comparable?. Adv Exp Med Biol. 2015; 840: 51-58
  • 436 Unfallversicherung DG. Falkensteiner Empfehlung. Empfehlung für die Begutachtung asbestbedingter Berufskrankheiten. 2011 http://publikationen.dguv.de/dguv/pdf/10002/falkensteinerempfehlung.pdf