Neuroradiologie Scan 2018; 08(04): 319-339
DOI: 10.1055/a-0638-3400
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

WHO-Klassifikation der Hirntumoren 2016: radiologisch relevante Neuerungen

2016 updates to the WHO brain tumor classification system: what the radiologist needs to know
Derek R. Johnson
,
Julie B. Guerin
,
Caterina Giannini
,
Jonathan M. Morris
,
Lawrence J. Eckel
,
Timothy J. Kaufmann

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Professor Dr. med. Michael Forsting, Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
18 October 2018 (online)

Abstract

Radiologists play a key role in brain tumor diagnosis and management and must stay abreast of developments in the field to advance patient care and communicate with other health care providers. In 2016, the World Health Organization (WHO) released an update to its brain tumor classification system that included numerous significant changes. Several previously recognized brain tumor diagnoses, such as oligoastrocytoma, primitive neuroectodermal tumor, and gliomatosis cerebri, were redefined or eliminated altogether. Conversely, multiple new entities were recognized, including diffuse leptomeningeal glioneuronal tumor and multinodular and vacuolating tumor of the cerebrum. The glioma category has been significantly reorganized, with several infiltrating gliomas in children and adults now defined by genetic features for the first time. These changes were driven by increased understanding of important genetic factors that directly impact tumorigenesis and influence patient care. The increased emphasis on genetic factors in brain tumor diagnosis has important implications for radiology, as we now have tools that allow us to evaluate some of these alterations directly, such as the identification of 2-hydroxyglutarate within infiltrating gliomas harboring mutations in the genes for the isocitrate dehydrogenases. For other tumors, such as medulloblastoma, imaging can demonstrate characteristic patterns that correlate with particular disease subtypes. The purpose of this article is to review the changes to the WHO brain tumor classification system that are most pertinent to radiologists.

Im Jahr 2016 hat die WHO ihr primäres Klassifikationsschema für Hirntumoren revidiert und dabei erstmals genetische Informationen in das Schema aufgenommen. Dieser Artikel gibt einen Überblick über die wichtigsten Änderungen des Klassifikationssystems. Dabei wird besonders auf diejenigen Änderungen eingegangen, die für Radiologen die größte Relevanz besitzen.

Kernaussagen
  • In der Neufassung des WHO-Klassifikationssystems für ZNS-Tumoren des Jahres 2016 werden einige Tumoren durch die Kombination von mikroskopisch-morphologischen und molekularen sowie genetischen Faktoren definiert. Hingegen werden andere Tumoren nach wie vor rein anhand ihrer Morphologie charakterisiert.

  • Mehrere bis dahin anerkannte Hirntumordiagnosen – so z. B. das Oligoastrozytom, primitive neuroektodermale Tumoren und die Gliomatosis cerebri – wurden entweder neu definiert oder vollständig gestrichen. Im Gegenzug wurden verschiedene neue Tumorentitäten eingeführt, darunter der diffuse leptomeningeal-glioneuronale Tumor und der multinoduläre und vakuolisierte Tumor des Zerebrums.

  • In der WHO-Revision von 2016 gilt nun die IDH-Mutation als definitorisch für infiltrierende Gliome bei Erwachsenen. Dabei wird dieser Tumortyp durch die Kodeletion 1p/19q weiter charakterisiert. Beim Oligodendrogliom handelt es sich um ein infiltrierendes Gliom, das sowohl die IDH-Mutation als auch die Kodeletion 1p/19q (die bei Fehlen der IDH-Mutation nicht auftritt) aufweist. Das Astrozytom hingegen ist ein infiltrierendes Gliom, das nach dem neuen Klassifikationssystem entsprechend dem Vorliegen der IDH-Mutation weiter unterteilt wird und niemals eine Kodeletion 1p/19q aufweist. Obwohl IDH-Mutanten an sich keine klare radiologische Signatur besitzen, lässt sich 2HG in der MRS nachweisen.

  • Aufgrund ihrer gemeinsamen genetischen Merkmale wurden SFT und HPZ unter dem Terminus „SFT/HPZ“ zusammengefasst. Diese lassen sich dem WHO-Grad I, II oder III zuordnen.

  • Hinsichtlich der Lokalisation von einzelnen Tumorsubtypen des Medulloblastoms wurden Trends beobachtet, darunter WNT-aktivierte Tumoren mit zentraler Lokalisation im Bereich von Kleinhirnstiel oder Kleinhirnbrückenwinkel, SHH-aktivierte Tumoren innerhalb der rostralen Kleinhirnhälfte sowie Tumoren der Gruppe 3 und 4 im Bereich der Mittellinie. Allerdings handelt es sich dabei eher um Verallgemeinerungen oder Trends als um Gesetzmäßigkeiten.

 
  • Literatur

  • 1 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl.) 2016; 131: 803-820
  • 2 Bailey P, Cushing H. A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. Philadelphia, Pa.: Lippincott; 1926
  • 3 International histological classification of tumours. Histological typing of tumours of the central nervous system. Geneva, Switzerland: World Health Organization; 1979 21.
  • 4 Louis DN, Perry A, Burger P. et al. International Society Of Neuropathology: Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 2014; 24: 429-435
  • 5 Hartmann C, Hentschel B, Wick W. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol (Berl.) 2010; 120: 707-718
  • 6 Weller M, Pfister SM, Wick W. et al. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 2013; 14: e370-e379
  • 7 van den Bent MJ, Brandes AA, Taphoorn MJ. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31: 344-350
  • 8 Cairncross JG, Wang M, Jenkins RB. et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014; 32: 783-790
  • 9 Buckner JC, Shaw EG, Pugh SL. et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016; 374: 1344-1355
  • 10 Yan H, Parsons DW, Jin G. et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765-773
  • 11 Hegi ME, Diserens AC, Gorlia T. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997-1003
  • 12 Pope WB, Prins RM, Albert ThomasM. et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 2012; 107: 197-205
  • 13 Kim H, Kim S, Lee HH. et al. In-vivo proton magnetic resonance spectroscopy of 2-hydroxyglutarate in isocitrate dehydrogenase-mutated gliomas: a technical review for neuroradiologists. Korean J Radiol 2016; 17: 620-632
  • 14 Beiko J, Suki D, Hess KR. et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol 2014; 16: 81-91
  • 15 de la Fuente MI, Young RJ, Rubel J. et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol 2016; 18: 283-290
  • 16 Johnson DR, Diehn FE, Giannini C. et al. Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. AJNR Am J Neuroradiol 2017; 38: 678-684
  • 17 Saito T, Muragaki Y, Maruyama T. et al. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas. Brain Tumor Pathol 2016; 33: 175-182
  • 18 Brant WE, Helms CA. Fundamentals of diagnostic radiology. 3rd ed. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2007: 116
  • 19 Aboian MS, Solomon DA, Felton E. et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol 2017; 38: 795-800
  • 20 Khuong-Quang DA, Buczkowicz P, Rakopoulos P. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol (Berl.) 2012; 124: 439-447
  • 21 Wu G, Broniscer A, McEachron TA. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44: 251-253
  • 22 Solomon DA, Wood MD, Tihan T. et al. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016; 26: 569-580
  • 23 Aihara K, Mukasa A, Gotoh K. et al. H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro Oncol 2014; 16: 140-146
  • 24 Warren KE. Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2012; 2: 205
  • 25 Bartels U, Hawkins C, Vézina G. et al. Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: advancing basic and translational research and cooperation in DIPG. J Neurooncol 2011; 105: 119-125
  • 26 Kramm CM, Butenhoff S, Rausche U. et al. Thalamic high-grade gliomas in children: a distinct clinical subset?. Neuro Oncol 2011; 13: 680-689
  • 27 Buczkowicz P, Bartels U, Bouffet E. et al. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol (Berl.) 2014; 128: 573-581
  • 28 Yoshimura J, Onda K, Tanaka R. et al. Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo) 2003; 43: 375-382 ; discussion 382
  • 29 Feng J, Hao S, Pan C. et al. The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Hum Pathol 2015; 46: 1626-1632
  • 30 Northcott PA, Jones DT, Kool M. et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012; 12: 818-834
  • 31 Northcott PA, Korshunov A, Pfister SM. et al. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012; 8: 340-351
  • 32 Kool M, Korshunov A, Remke M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol (Berl.) 2012; 123: 473-484
  • 33 Taylor MD, Northcott PA, Korshunov A. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol (Berl.) 2012; 123: 465-472
  • 34 Pietsch T, Schmidt R, Remke M. et al. Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol (Berl.) 2014; 128: 137-149
  • 35 Ellison DW, Onilude OE, Lindsey JC. et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 2005; 23: 7951-7957
  • 36 Gajjar A, Pfister SM, Taylor MD. et al. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 2014; 20: 5630-5640
  • 37 Gibson P, Tong Y, Robinson G. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010; 468: 1095-1099
  • 38 Perreault S, Ramaswamy V, Achrol AS. et al. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 2014; 35: 1263-1269
  • 39 Teo WY, Shen J, Su JM. et al. Implications of tumor location on subtypes of medulloblastoma. Pediatr Blood Cancer 2013; 60: 1408-1410
  • 40 Clifford SC, Lusher ME, Lindsey JC. et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 2006; 5: 2666-2670
  • 41 Giangaspero F, Perilongo G, Fondelli MP. et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 1999; 91: 971-977
  • 42 Eberhart CG, Kratz J, Wang Y. et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 2004; 63: 441-449
  • 43 Łastowska M, Jurkiewicz E, Trubicka J. et al. Contrast enhancement pattern predicts poor survival for patients with non-WNT/SHH medulloblastoma tumours. J Neurooncol 2015; 123: 65-73
  • 44 Fuller CE. All things rhabdoid and SMARC: an enigmatic exploration with Dr. Louis P. Dehner. Semin Diagn Pathol 2016; 33: 427-440
  • 45 Hasselblatt M, Gesk S, Oyen F. et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 2011; 35: 933-935
  • 46 Warmuth-Metz M, Bison B, Dannemann-Stern E. et al. CT and MR imaging in atypical teratoid/rhabdoid tumors of the central nervous system. Neuroradiology 2008; 50: 447-452
  • 47 Koral K, Gargan L, Bowers DC. et al. Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol 2008; 190: 809-814
  • 48 Bruggers CS, Moore K. Magnetic resonance imaging spectroscopy in pediatric atypical teratoid rhabdoid tumors of the brain. J Pediatr Hematol Oncol 2014; 36: e341-e345
  • 49 Meyers SP, Khademian ZP, Biegel JA. et al. Primary intracranial atypical teratoid/rhabdoid tumors of infancy and childhood: MRI features and patient outcomes. AJNR Am J Neuroradiol 2006; 27: 962-971
  • 50 Fenton LZ, Foreman NK. Atypical teratoid/rhabdoid tumor of the central nervous system in children: an atypical series and review. Pediatr Radiol 2003; 33: 554-558
  • 51 Arslanoglu A, Aygun N, Tekhtani D. et al. Imaging findings of CNS atypical teratoid/rhabdoid tumors. AJNR Am J Neuroradiol 2004; 25: 476-480
  • 52 Gessi M, Giangaspero F, Lauriola L. et al. Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol 2009; 33: 211-217
  • 53 Woehrer A, Slavc I, Peyrl A. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with loss of morphological but retained genetic key features during progression. Acta Neuropathol (Berl.) 2011; 122: 787-790
  • 54 Korshunov A, Sturm D, Ryzhova M. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol (Berl.) 2014; 128: 279-289
  • 55 Spence T, Sin-Chan P, Picard D. et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol (Berl.) 2014; 128: 291-303
  • 56 Kleinschmidt-DeMasters BK, Boylan A, Capocelli K. et al. Multinodular leptomeningeal metastases from ETANTR contain both small blue cell and maturing neuropil elements. Acta Neuropathol (Berl.) 2011; 122: 783-785
  • 57 Cho HJ, Myung JK, Kim H. et al. Primary diffuse leptomeningeal glioneuronal tumors. Brain Tumor Pathol 2015; 32: 49-55
  • 58 Rodriguez FJ, Perry A, Rosenblum MK. et al. Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol (Berl.) 2012; 124: 627-641
  • 59 Gardiman MP, Fassan M, Orvieto E. et al. Diffuse leptomeningeal glioneuronal tumors: a new entity?. Brain Pathol 2010; 20: 361-366
  • 60 Huang T, Zimmerman RA, Perilongo G. et al. An unusual cystic appearance of disseminated low-grade gliomas. Neuroradiology 2001; 43: 868-874
  • 61 Ko MW, Turkeltaub PE, Lee EB. et al. Primary diffuse leptomeningeal gliomatosis mimicking a chronic inflammatory meningitis. J Neurol Sci 2009; 278: 127-131
  • 62 Preuss M, Christiansen H, Merkenschlager A. et al. Disseminated oligodendroglial-like leptomeningeal tumors: preliminary diagnostic and therapeutic results for a novel tumor entity. J Neurooncol 2015; 124: 65-74 [Published correction appears in J Neurooncol 2015; 124 (1): 75–77]
  • 63 Rodriguez FJ, Schniederjan MJ, Nicolaides T. et al. High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol (Berl.) 2015; 129: 609-610
  • 64 Rhiew RB, Manjila S, Lozen A. et al. Leptomeningeal dissemination of a pediatric neoplasm with 1p19q deletion showing mixed immunohistochemical features of an oligodendroglioma and neurocytoma. Acta Neurochir (Wien) 2010; 152: 1425-1429
  • 65 Schniederjan MJ, Alghamdi S, Castellano-Sanchez A. et al. Diffuse leptomeningeal neuroepithelial tumor: 9 pediatric cases with chromosome 1p/19q deletion status and IDH1 (R132H) immunohistochemistry. Am J Surg Pathol 2013; 37: 763-771
  • 66 Pietsch T, Wohlers I, Goschzik T. et al. Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-kB signaling pathway. Acta Neuropathol (Berl.) 2014; 127: 609-611
  • 67 Pajtler KW, Witt H, Sill M. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 2015; 27: 728-743
  • 68 Parker M, Mohankumar KM, Punchihewa C. et al. C11orf95-RELA fusions drive oncogenic NF-kB signalling in ependymoma. Nature 2014; 506: 451-455
  • 69 Mack SC, Witt H, Piro RM. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 2014; 506: 445-450
  • 70 Mangalore S, Aryan S, Prasad C. et al. Imaging characteristics of supratentorial ependymomas: study on a large single institutional cohort with histopathological correlation. Asian J Neurosurg 2015; 10: 276-281
  • 71 Huse JT, Edgar M, Halliday J. et al. Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion. Brain Pathol 2013; 23: 515-524
  • 72 Bodi I, Curran O, Selway R. et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun 2014; 2: 7
  • 73 Fukushima S, Yoshida A, Narita Y. et al. Multinodular and vacuolating neuronal tumor of the cerebrum. Brain Tumor Pathol 2015; 32: 131-136
  • 74 Louis DN, Aldape K, Brat DJ. et al. Announcing cIMPACT-NOW: the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. Acta Neuropathol (Berl.) 2017; 133: 1-3