Radiologie up2date 2018; 18(04): 303-315
DOI: 10.1055/a-0657-7090
Gerätetechniken/Neuentwicklungen/Digitale Radiologie
Georg Thieme Verlag KG Stuttgart · New York

Grundlagen, Umsetzung und klinische Anwendung der Dual-Energy-CT

Nils Große Hokamp
,
Simon Lennartz
,
David Maintz
Further Information

Publication History

Publication Date:
14 December 2018 (online)

Die neuesten Computertomografen messen die Schwächung hoch- und niederenergetischer Röntgenquanten separat und erlauben so neben der Berechnung konventioneller Bilder die Erstellung vieler weiterer Rekonstruktionen. Die so zur Verfügung stehenden virtuell monoenergetischen Bilder, Jodkarten, virtuell nativen Bilder u. v. a. erhalten zunehmend Einzug in sämtliche Domänen der CT-Diagnostik.

Kernaussagen
  • In der Dual-Energy-CT (DECT) werden 2 verschiedene Energien eingesetzt. Damit können die untersuchten Objekte gezielter identifiziert und Gewebe besser charakterisiert werden.

  • Bei den Konzepten zur DECT sind emissionsbasierte Ansätze (simultane Abtastung mit 2 verschiedenen Energien) von detektorbasierten Ansätzen (simultane Registrierung der Schwächung) zu unterscheiden.

  • Die DECT ermöglicht nicht nur konventionelle CT-Bilder, sondern viele weitere Bildrekonstruktionen, z. B. virtuell monoenergetische Rekonstruktionen, virtuell native Bilder, Jodkarten, Karten der Elektronendichte oder der effektiven Ordnungszahl.

  • Bei emissionsbasierten CTs im DECT-Modus ist entweder die Strahlenexposition (minimal) erhöht oder die Qualität konventioneller Bilder (minimal) reduziert.

 
  • Literatur

  • 1 Neuhaus V, Große Hokamp N, Abdullayev N. et al. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck. Eur Radiol 2018; 28: 1102-1110
  • 2 Große Hokamp N, Höink AJ, Doerner J. et al. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: phantom and patient experience. Abdom Radiol (New York) 2018; 43: 2066-2074
  • 3 De Cecco CN, Caruso D, Schoepf UJ, De Santis D. et al. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol 2018; 28: 3393-3404
  • 4 Große Hokamp N, Abdullayev N, Borggrefe J. Verbesserte Darstellung intraspinaler Lymphome mittels virtuell-monoenergetischen Rekonstruktionen der Dual-Energy-CT. RoFo 2018; 190: 638-640
  • 5 De Cecco CN, Caruso D, Schoepf UJ, Wichmann JL. et al. Optimization of window settings for virtual monoenergetic imaging in dual-energy CT of the liver: A multi-reader evaluation of standard monoenergetic and advanced imaged-based monoenergetic datasets. Eur J Radiol 2016; 85: 695-699
  • 6 Große Hokamp N, Kessner R, Van Hedent S. et al. Spectral detector CT pulmonary angiography: Improved diagnostic assessment and automated estimation of window settings. J Comput Assist Tomogr 2018; DOI: 10.1097/RCT.0000000000000743.
  • 7 Bamberg F, Dierks A, Nikolaou K. et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011; 21: 1424-1429
  • 8 Laukamp KR, Lennartz S, Neuhaus V. et al. CT metal artifacts in patients with total hip replacements: for artifact reduction monoenergetic reconstructions and post-processing algorithms are both efficient but not similar. Eur Radiol 2018; 28: 4524-4533
  • 9 Große Hokamp N, Neuhaus V, Abdullayev N. et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms. Skeletal Radiol 2018; 47: 195-201
  • 10 Kuchenbecker S, Faby S, Sawall S. et al. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?. Med Phys 2015; 42: 1023-1036
  • 11 Mangold S, Gatidis S, Luz O. et al. Single-source dual-energy computed tomography: use of monoenergetic extrapolation for a reduction of metal artifacts. Invest Radiol 2014; 49: 788-793
  • 12 Große Hokamp N, Laukamp KR, Lennartz S. et al. Artifact reduction from dental implants using virtual monoenergetic reconstructions from novel Spectral Detector CT. Eur J Radiol 2018; 104: 136-142
  • 13 Große Hokamp N, Hellerbach A, Gierich A. et al. Reduction of Artifacts Caused by Deep Brain Stimulating Electrodes in Cranial Computed Tomography Imaging by Means of Virtual Monoenergetic Images, Metal Artifact Reduction Algorithms, and Their Combination. Invest Radiol 2018; 53: 424-431
  • 14 Ananthakrishnan L, Rajiah P, Ahn R. et al. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT. Abdom Radiol (New York) 2017; 42: 702-709
  • 15 Patino M, Prochowski A, Agrawal MD. et al. Material Separation Using Dual-Energy CT: Current and Emerging Applications. RadioGraphics 2016; 36: 1087-1105
  • 16 Große Hokamp N, Abdullayev N, Persigehl T. et al. Precision and reliability of liver iodine quantification from spectral detector CT: Evidence from phantom and patient data. Eur Radiol 2018; DOI: 10.1007/s00330-018-5744-0.
  • 17 Albrecht MH, Bickford MW, Nance JW. et al. State-of-the-Art pulmonary CT angiography for acute pulmonary embolism. Am J Roentgenol 2017; 208: 495-504
  • 18 Leithner D, Wichmann JL, Vogl TJ. et al. Virtual Monoenergetic Imaging and Iodine Perfusion Maps Improve Diagnostic Accuracy of Dual-Energy Computed Tomography Pulmonary Angiography With Suboptimal Contrast Attenuation. Invest Radiol 2017; 00: 1-7
  • 19 Desai M a Peterson JJ, Garner HW. et al. Clinical Utility of Dual-Energy CT for Evaluation of Tophaceous Gout. Radiographics 2011; 31: 1365-1375
  • 20 Thomas C, Heuschmid M, Schilling D. et al. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology 2010; 257: 402-409
  • 21 Große Hokamp N, Salem J, Hesse A. et al. Low-Dose Characterization of Kidney Stones Using Spectral Detector Computed Tomography: An Ex Vivo Study. Invest Radiol 2018; 53: 457-462
  • 22 Boll DT, Patil NA, Paulson EK. et al. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition-pilot study. Radiology 2009; 250: 813-820
  • 23 Van Elmpt W, Landry G, Das M. et al. Dual energy CT in radiotherapy: Current applications and future outlook. Radiother Oncol 2016; 119: 137-144
  • 24 Henzler T, Fink C, Schoenberg SO. et al. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol 2012; 199: 16-25
  • 25 Euler A, Obmann MM, Szucs-Farkas Z. et al. Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 2018; 28: 3405-3412
  • 26 Haneder S, Siedek F, Doerner J. et al. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition. Acta Radiol 2018; 284185118762611
  • 27 Flohr TG, McCollough CH, Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16: 256-268
  • 28 Muenzel D, Bar-Ness D, Roessl E. et al. Spectral Photon-counting CT: Initial Experience with Dual-Contrast Agent K-Edge Colonography. Radiology 2017; 283: 723-728