Ultraschall Med 2019; 40(02): 212-220
DOI: 10.1055/a-0661-5952
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

A Prospective Two Center Study Comparing Breast Cancer Lesion Size Defined by 2D Shear Wave Elastography, B-Mode Ultrasound, and Mammography with the Histopathological Size

Größenbestimmung maligner Brusttumoren durch 2D-Scherwellenelastografie, B-Bild-Sonografie und Mammografie im Vergleich zur histopathologischen Tumorgröße: Daten einer prospektiven 2-Zentren-Studie
Andre Farrokh
1   Department of Gynecology and Obstetrics, University-Hospital Schleswig-Holstein Campus Kiel, Germany
,
Linn Treu
2   Department of Gynecology and Obstetrics, Imland-Klinik Rendsburg, Germany
,
Ralf Ohlinger
3   Department of Gynecology and Obstetrics, Ernst-Moritz-Arndt-University Greifswald, Germany
,
Carolin Flieger
3   Department of Gynecology and Obstetrics, Ernst-Moritz-Arndt-University Greifswald, Germany
,
Nicolai Maass
1   Department of Gynecology and Obstetrics, University-Hospital Schleswig-Holstein Campus Kiel, Germany
,
Fritz KW Schäfer
4   Department of Breast Imaging and Interventions, University-Hospital Schleswig-Holstein Campus Kiel, Germany
› Author Affiliations
Further Information

Publication History

20 February 2018

11 July 2018

Publication Date:
20 August 2018 (online)

Abstract

Purpose The aim of the present study was to determine the accuracy of breast cancer measurement with 2 D shear wave elastography (2 D SWE), B-mode ultrasound, and mammography by comparing these methods with the actual histopathological tumor size.

Materials and Methods 135 patients with proven malignant breast lesions at two centers were included in a prospective study. The maximum lesion diameter was measured by 2 D SWE, B-mode ultrasound, and mammography. After surgery, the histopathological tumor size was measured by a pathologist.

Results The mean difference in tumor size on 2 D SWE, B-mode ultrasound, and mammography on the one hand, and the actual tumor size on the other, was –0.03 cm, 0.16 cm and 0.10 cm, respectively. Lesion size on histopathological investigation was overestimated by 2 D SWE (p = 0.004) and underestimated by B-mode imaging (p < 0.001). All three imaging methods underestimated the size of invasive lobular cancers and lesions > 15 mm; 2 D SWE was most accurate in this regard.

Conclusion 2 D SWE predicted lesion size more precisely than B-mode ultrasound or mammography. In cases of invasive lobular carcinoma, all three imaging methods underestimated lesion size, with 2 D SWE coming closest to the actual tumor size.

Zusammenfassung

Ziel Ziel der Studie ist es, die Genauigkeit der Brustkrebsgrößenmessung mittels 2D-Scherwellenelastografie (2D-SWE), B-Bild-Ultraschall und Mammografie zu evaluieren und mit der tatsächlichen histopathologischen Tumorgröße zu vergleichen.

Material und Methode Diese an 2 Zentren durchgeführte prospektive Studie umfasste 135 Patienten mit nachgewiesenen malignen Brusttumoren. Der maximale Durchmesser wurde mittels 2D-SWE, B-Bild-Ultraschall und Mammografie gemessen. Nach operativer Entfernung der Tumoren wurde die histopathologische Tumorgröße von den Pathologen gemessen und als Goldstandard zum Vergleich mit den bildgebenden Messungen verwendet.

Ergebnisse Die mittlere Differenz zwischen der gemessenen und der tatsächlichen Tumorgröße für 2D-SWE, B-Bild-Ultraschall und Mammografie betrug –0,03 cm, 0,16 cm bzw. 0,10 cm. Die 2D-SWE überschätzt (p = 0,004), während der B-Bild-Ultraschall (p < 0,001) die Größe der histopathologischen Veränderung unterschätzt. Alle 3 bildgebenden Verfahren unterschätzen die Ausdehnung invasiv lobulärer Karzinome und Tumoren > 15 mm, wobei die 2D-SWE hier am genauesten misst.

Schlussfolgerungen Die Größenmessung maligner Brusttumoren ist mit der 2D-SWE genauer als mit dem B-Bild-Ultraschall und der Mammografie. Bei invasiv lobulären Karzinomen unterschätzen alle 3 bildgebenden Verfahren die tatsächliche Größe des Tumors, wobei die 2D-SWE der tatsächlichen Tumorgröße am nächsten kommt.

 
  • References

  • 1 Dixon JM, Newlands C, Dodds C. et al. Association between underestimation of tumour size by imaging and incomplete excision in breast-conserving surgery for breast cancer. Br J Surg 2016; 103: 830-838
  • 2 Dietrich CF, Barr RG, Farrokh A. et al. Strain Elastography – How To Do It?. Ultrasound Int Open 2017; 3: E137-E149
  • 3 Xue Y, Yao S, Li X. et al. Value of shear wave elastography in discriminating malignant and benign breast lesions: A meta-analysis. Medicine (Baltimore) 2017; 96: e7412
  • 4 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 5 Cosgrove D, Piscaglia F, Bamber J. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med 2013; 34: 238-253
  • 6 Barr RG, Destounis S, Lackey LB. et al. Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial. J Ultrasound Med 2012; 31: 281-287
  • 7 Isermann R, Grunwald S, Hatzung G. et al. Breast lesion sizing by B-mode imaging and sonoelastography in comparison to histopathological sizing--a prospective study. Ultraschall in Med 2011; 32 (Suppl. 01) S21-S26
  • 8 Barr RG. The Role of Sonoelastography in Breast Lesions. Semin Ultrasound CT MR 2018; 39: 98-105
  • 9 Shiina T, Nightingale KR, Palmeri ML. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126-1147
  • 10 Mullen R, Thompson JM, Moussa O. et al. Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers. Clin Radiol 2014; 69: 1259-1263
  • 11 Youk JH, Gweon HM, Son EJ. Shear-wave elastography in breast ultrasonography: the state of the art. Ultrasonography 2017; 36: 300-309
  • 12 Feldmann A, Langlois C, Dewailly M. et al. Shear Wave Elastography (SWE): An Analysis of Breast Lesion Characterization in 83 Breast Lesions. Ultrasound Med Biol 2015; 41: 2594-2604
  • 13 Pain JA, Ebbs SR, Hern RP. et al. Assessment of breast cancer size: a comparison of methods. Eur J Surg Oncol 1992; 18: 44-48
  • 14 Madjar H, Ladner HA, Sauerbrei W. et al. Preoperative staging of breast cancer by palpation, mammography and high-resolution ultrasound. Ultrasound Obstet Gynecol 1993; 3: 185-190
  • 15 Hieken TJ, Harrison J, Herreros J. et al. Correlating sonography, mammography, and pathology in the assessment of breast cancer size. Am J Surg 2001; 182: 351-354
  • 16 Fornvik D, Zackrisson S, Ljungberg O. et al. Breast tomosynthesis: Accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiol 2010; 51: 240-247
  • 17 Polat YD, Taskin F, Cildag MB. et al. The role of tomosynthesis in intraoperative specimen evaluation. Breast J Online-Publikation: 2018; DOI: 10.1111/tbj.13070.
  • 18 Phi XA, Tagliafico A, Houssami N. et al. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts – a systematic review and meta-analysis. BMC Cancer 2018; 18: 380
  • 19 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms, Version 4.0, 2017 AWMF Registernummer:032-045OL. http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/ (abgerufen am: 06.06.2018)
  • 20 Meier-Meitinger M, Haberle L, Fasching PA. et al. Assessment of breast cancer tumour size using six different methods. Eur Radiol 2011; 21: 1180-1187
  • 21 Stachs A, Pandjaitan A, Martin A. et al. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging. Ultrasound Med Biol 2016; 42: 2758-2765
  • 22 Gruber IV, Rueckert M, Kagan KO. et al. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer 2013; 13: 328
  • 23 Stein RG, Wollschlager D, Kreienberg R. et al. The impact of breast cancer biological subtyping on tumor size assessment by ultrasound and mammography – a retrospective multicenter cohort study of 6543 primary breast cancer patients. BMC Cancer 2016; 16: 459
  • 24 Evans A, Sim YT, Thomson K. et al. Shear wave elastography of breast cancer: Sensitivity according to histological type in a large cohort. Breast 2016; 26: 115-118
  • 25 Fasching PA, Heusinger K, Loehberg CR. et al. Influence of mammographic density on the diagnostic accuracy of tumor size assessment and association with breast cancer tumor characteristics. Eur J Radiol 2006; 60: 398-404
  • 26 Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27825 patient evaluations. Radiology 2002; 225: 165-175
  • 27 Leddy R, Irshad A, Metcalfe A. et al. Comparative accuracy of preoperative tumor size assessment on mammography, sonography, and MRI: Is the accuracy affected by breast density or cancer subtype?. J Clin Ultrasound 2016; 44: 17-25
  • 28 Krekel NM, Haloua MH, Lopes CardozoAM. et al. Intraoperative ultrasound guidance for palpable breast cancer excision (COBALT trial): a multicentre, randomised controlled trial. Lancet Oncol 2013; 14: 48-54
  • 29 Allen WM, Chin L, Wijesinghe P. et al. Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. Biomed Opt Express 2016; 7: 4139-4153