Z Gastroenterol 2018; 56(10): 1247-1256
DOI: 10.1055/a-0668-2891
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Vergleich einer kommerziell erhältlichen, Formula-basierten, mit Haferballaststoffen angereicherten Ernährungstherapie mit einer isokalorischen diätetischen Therapie ohne Formula zur Therapie der nicht-alkoholischen Fettlebererkrankung (NAFLD) – eine randomisierte, kontrollierte Interventionsstudie

Comparison of a commercially available, formula-based nutritional therapy enriched with oats fiber with a non-formula isocaloric therapy to treat non-alcoholic fatty liver disease (NAFLD) – a randomized, controlled intervention trial
Anna Schweinlin
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Germany
2   Zentrum für Klinische Ernährung Stuttgart GmbH, Stuttgart, Germany
,
Sina Ulbrich
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Germany
,
Sina Stauß
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Germany
,
Melanie Teutsch
3   Bodymed AG, Kirkel, Germany
,
Hardy Walle
3   Bodymed AG, Kirkel, Germany
,
Maryam Basrai
2   Zentrum für Klinische Ernährung Stuttgart GmbH, Stuttgart, Germany
,
Stephan C. Bischoff
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Germany
2   Zentrum für Klinische Ernährung Stuttgart GmbH, Stuttgart, Germany
› Author Affiliations
Further Information

Publication History

28 November 2017

26 July 2018

Publication Date:
10 October 2018 (online)

Zusammenfassung

Die nicht-alkoholische Fettlebererkrankung (NAFLD) wird primär mittels Kalorienrestriktion mit konsekutiver Reduktion des Körpergewichts behandelt. Ein Austausch von Stärke und Zucker gegen Protein, einfach ungesättigte und langkettige Omega-3-Fettsäuren wie auch präbiotisches β-Glucan sollen dabei unterstützend wirken.

In einer randomisierten, kontrollierten Interventionsstudie wurde der Effekt zweier Diätkonzepte auf den hepatischen Lipidgehalt und biochemische Parameter an Patienten mit Body-Mass-Index (BMI) > 30 kg/m2 und Zeichen einer Fettlebererkrankung untersucht. Die Interventionsgruppe (IG, n = 17) erhielt eine kommerziell erhältliche Formula-Diät mit Haferballaststoffen, die Kontrollgruppe (KG, n = 19) wurde auf eine kalorisch vergleichbar beschränkte Kost (ca. 1000 kcal/Tag) nach der Methodik der „low glycemic and insulinemic diet“ eingestellt.

Beide Diätkonzepte führten nach 12 Wochen zu einer Reduktion des BMI (IG: von 33,8 ± 2,9 nach 29,3 ± 2,5 kg/m2, KG: von 33,7 ± 2,8 nach 30,1 ± 3,2 kg/m2, beide p < 0,001) sowie zu einer Verbesserung der Leberfunktion und der metabolischen Situation. Der hepatorenale Index verringerte sich in beiden Gruppen, allerdings in der IG deutlicher als in der KG (Studienende: 1,1 ± 0,2 vs. 1,9 ± 0,3, p < 0,05). Eine Blutdruckreduktion trat nur in der IG auf (systolisch von 136 ± 15 auf 122 ± 11 mmHg, diastolisch von 89 ± 9 auf 79 ± 11 mmHg, beide p < 0,01).

Zusammenfassend sind beide diätetischen Interventionen ähnlich effektiv hinsichtlich Gewichtsreduktion, aber die Intervention mit der Formula-Diät mit Haferballaststoffen war hinsichtlich der Reduktion des Leberfettgehalts und der Blutdrucksenkung effektiver als die Kontroll-Diät.

Abstract

Non-alcoholic fatty liver disease (NAFLD) is mainly treated with caloric restriction and consecutive weight reduction. Protein, in exchange for starch and sugar as well as monounsaturated and long chain omega-3-fatty acids and prebiotic β-glucan, are thought to be supportive.

In a randomized controlled intervention study, two different dietary concepts were tested regarding effects on intrahepatic lipid content as well as on biochemical parameters in patients with a body-mass-index (BMI) > 30 kg/m2 and signs of fatty liver disease. The intervention group (IG, n = 17) received a commercially available formula diet supplemented with oats fibers. The control group (CG, n = 19) received a comparably restricted diet (approx. 1000 kcal/d) according to the “low glycemic and insulinemic diet” method.

After twelve weeks, both interventions resulted into a reduction of BMI (IG: 33.8 ± 2.9 to 29.3 ± 2.5 kg/m2, CG: 33.7 ± 2.8 to 30.1 ± 3.2 kg/m2, both p < 0.001), as well as an improvement of liver and other metabolic functions. The hepatorenal index decreased in both groups, however, this reduction was more pronounced in the IG than in the CG (end of the study: 1.1 ± 0.2 vs. 1.9 ± 0.3, p < 0.05). A reduction of blood pressure only occurred in the IG (systolic from 136 ± 15 mmHg to 122 ± 11 mmHg, diastolic from 89 ± 9 mmHg to 79 ± 11 mmHg, both p < 0.01).

In conclusion, we found that both dietetic interventions were similarly effective regarding weight reduction, but the formula diet with oats fibers was more effective regarding the reduction of intrahepatic lipid content and blood pressure than the control diet.

 
  • Literatur

  • 1 Hassan K, Bhalla V, El Regal ME. et al. Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World Journal of Gastroenterology 2014; 20: 12082
  • 2 Krawczyk M, Bonfrate L, Portincasa P. Nonalcoholic fatty liver disease. Best Practice & Research Clinical Gastroenterology 2010; 24: 695-708
  • 3 Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Practice & Research Clinical Gastroenterology 2014; 28: 637-653
  • 4 Kühn JP, Meffert P, Heske C. et al. Prevalence of Fatty Liver Disease and Hepatic Iron Overload in a Northeastern German Population by Using Quantitative MR Imaging. Radiology 2017; 284: 706-716
  • 5 Roeb E, Steffen H, Bantel H. et al. S2k Guideline non-alcoholic fatty liver disease. Zeitschrift für Gastroenterologie 2015; 53: 668
  • 6 Houghton D, Thoma C, Hallsworth K. et al. Exercise reduces liver lipids and visceral adiposity in patients with nonalcoholic steatohepatitis in a randomized controlled trial. Clin Gastroenterol Hepatol 2017; 15: 96-102
  • 7 Fan JG, Cao HX. Role of diet and nutritional management in non‐alcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28: 81-87
  • 8 Mouzaki M, Allard JP. The role of nutrients in the development, progression, and treatment of nonalcoholic fatty liver disease. J Clin Gastroenterol 2012; 46: 457-467
  • 9 Butt MS, Tahir-Nadeem M, Khan MKI. et al. Oat: unique among the cereals. Eur J Nutr 2008; 47: 68-79
  • 10 Chang HC, Huang CN, Yeh DM. et al. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum Nutr 2013; 68: 18-23
  • 11 You S, Hu X, Zhao Q. et al. Oat β-glucan inhibits lipopolysaccharide-induced nonalcoholic steatohepatitis in mice. Food Funct 2013; 4: 1360-1368
  • 12 Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work?. Br J Nutr 2013; 109: S81-S85
  • 13 Pachikian BD, Essaghir A, Demoulin JB. et al. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways. Mol Nutr Food Res 2013; 57: 347-359
  • 14 Pingitore A, Chambers ES, Hill T. et al. The diet‐derived short chain fatty acid propionate improves beta‐cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes, Obesity and Metabolism 2017; 19: 257-265
  • 15 Guess ND, Dornhorst A, Oliver N. et al. A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutr Metab (Lond) 2015; 12: 36
  • 16 Bedogni G, Bellentani S, Miglioli L. et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006; 6: 33
  • 17 Arslanow A, Teutsch M, Walle H. et al. Short-term hypocaloric high-fiber and high-protein diet improves hepatic steatosis assessed by controlled attenuation parameter. Clinical and translational gastroenterology 2016; 7: e176
  • 18 Heilmeyer P. Die LOGI-Methode. Ernährung & Medizin 2008; 23: 20-25
  • 19 Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004; 27: 1487-1495
  • 20 Matthews D, Hosker J, Rudenski A. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419
  • 21 Webb M, Yeshua H, Zelber-Sagi S. et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. American Journal of Roentgenology 2009; 192: 909-914
  • 22 Cacciapuoti F, Scognamiglio A, Palumbo R. et al. Silymarin in non alcoholic fatty liver disease. World J Hepatol 2013; 5: 109
  • 23 Purcell K, Sumithran P, Prendergast LA. et al. The effect of rate of weight loss on long-term weight management: a randomised controlled trial. The Lancet Diabetes & Endocrinology 2014; 2: 954-962
  • 24 Balsan GA, Vieira JLC, Oliveira AM. et al. Relationship between adiponectin, obesity and insulin resistance. Rev Assoc Med Bras 2015; 61: 72-80
  • 25 Wheeler ML, Dunbar SA, Jaacks LM. et al. Macronutrients, food groups, and eating patterns in the management of diabetes. Diabetes Care 2012; 35: 434-445
  • 26 Tielemans SM, Kromhout D, Altorf-van der Kuil W. et al. Associations of plant and animal protein intake with 5-year changes in blood pressure: The Zutphen Elderly Study. Nutrition, Metabolism and Cardiovascular Diseases 2014; 24: 1228-1233
  • 27 Stamler J, Elliott P, Kesteloot H. et al. Inverse relation of dietary protein markers with blood pressure. Circulation 1996; 94: 1629-1634
  • 28 Damsgaard CT, Papadaki A, Jensen SM. et al. Higher protein diets consumed ad libitum improve cardiovascular risk markers in children of overweight parents from eight European countries. The Journal of nutrition 2013; 143: 810-817
  • 29 Kirk E, Reeds DN, Finck BN. et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 2009; 136: 1552-1560
  • 30 Ryan MC, Itsiopoulos C, Thodis T. et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 2013; 59: 138-143
  • 31 Aminian A, Zelisko A, Kirwan JP. et al. Exploring the impact of bariatric surgery on high density lipoprotein. Surg Obes Relat Dis 2015; 11: 238-247
  • 32 Masterton G, Plevris J, Hayes P. omega‐3 fatty acids–a promising novel therapy for non‐alcoholic fatty liver disease. Aliment Pharmacol Ther 2010; 31: 679-692
  • 33 Corbin KD, Zeisel SH. Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 2012; 28: 159
  • 34 Donnelly KL, Smith CI, Schwarzenberg SJ. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115: 1343
  • 35 Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93: 359-404
  • 36 Behall KM, Scholfield DJ, Hallfrisch JG. et al. Consumption of both resistant starch and β-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 2006; 29: 976-981
  • 37 Schwenzer NF, Springer F, Schraml C. et al. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51: 433-445
  • 38 Feng W, Gao C, Bi Y. et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J Diabetes 2017; 9: 800-809
  • 39 Gelli C, Tarocchi M, Abenavoli L. et al. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23: 3150
  • 40 Zelber-Sagi S, Kessler A, Brazowsky E. et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2006; 4: 639-644
  • 41 Hernaez R, Lazo M, Bonekamp S. et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta‐analysis. Hepatology 2011; 54: 1082-1090
  • 42 Williamson R, Perry E, Glancy S. et al. The use of ultrasound to diagnose hepatic steatosis in type 2 diabetes: intra-and interobserver variability and comparison with magnetic resonance spectroscopy. Clin Radiol 2011; 66: 434-439
  • 43 Guth S, Leise U, Gocke C. et al. Ultrasound versus MRI in preventive examinations-a retrospective analysis of 833 patients. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2012; 33: E202-E209
  • 44 Seko Y, Yamaguchi K, Itoh Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol 2018; 11: 97-102
  • 45 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461
  • 46 Brehm BJ, Seeley RJ, Daniels SR. et al. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. The Journal of Clinical Endocrinology & Metabolism 2003; 88: 1617-1623
  • 47 Frisch S, Zittermann A, Berthold HK. et al. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program. Cardiovasc Diabetol 2009; 8: 36
  • 48 De Luis D, Aller R, Izaola O. et al. Effect of two different hypocaloric diets in transaminases and insulin resistance in nonalcoholic fatty liver disease and obese patients. Nutr Hosp 2010; 25: 730-735
  • 49 Haufe S, Engeli S, Kast P. et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 2011; 53: 1504-1514