Rofo 2019; 191(02): 122-129
DOI: 10.1055/a-0668-6031
Chest
© Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Radiation Dose and Image Quality using High-Pitch 70-kV Chest CT in Immunosuppressed Patients

Article in several languages: English | deutsch
Ibrahim Yel
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Simon S. Martin
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Julian L. Wichmann
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Lukas Lenga
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Moritz H. Albrecht
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Andreas M. Bucher
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Benjamin Kaltenbach
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Christoph Polkowski
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Christian Booz
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Thomas J. Vogl
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
,
Renate Maria Hammerstingl
Department of Diagnostic and Interventional Radiology, University-Hospital Frankfurt, Germany
› Author Affiliations
Further Information

Publication History

25 January 2018

07 July 2018

Publication Date:
04 September 2018 (online)

Abstract

Purpose The aim of the study was to evaluate high-pitch 70-kV CT examinations of the thorax in immunosuppressed patients regarding radiation dose and image quality in comparison with 120-kV acquisition.

Materials and Methods The image data from 40 patients (14 women and 26 men; mean age: 40.9 ± 15.4 years) who received high-pitch 70-kV CT chest examinations were retrospectively included in this study. A control group (n = 40), matched by age, gender, BMI, and clinical inclusion criteria, had undergone standard 120-kV chest CT imaging. All CT scans were performed on a third-generation dual-source CT unit. For an evaluation of the radiation dose, the CT dose index (CTDIvol), dose-length product (DLP), effective dose (ED), and size-specific dose estimates (SSDE) were analyzed in each group. The objective image quality was evaluated using signal-to-noise (SNR) and contrast-to-noise ratios (CNR). Three blinded and independent radiologists evaluated subjective image quality and diagnostic confidence using 5-point Likert scales.

Results The mean dose parameters were significantly lower for high-pitch 70-kV CT examinations (CTDIvol, 2.9 ± 0.9 mGy; DLP, 99.9 ± 31.0 mGyxcm; ED, 1.5 ± 0.6 mSv; SSDE, 3.8 ± 1.2 mGy) compared to standard 120-kV CT imaging (CTDIvol, 8.8 ± 3.7mGy; DLP, 296.6 ± 119.3 mGyxcm; ED, 4.4 ± 2.1 mSv; SSDE, 11.6 ± 4.4 mGy) (P≤ 0.001). The objective image parameters (SNR: 7.8 ± 2.1 vs. 8.4 ± 1.8; CNR: 7.7 ± 2.4 vs. 8.3 ± 2.8) (P≥ 0.065) and the cumulative subjective image quality (4.5 ± 0.4 vs. 4.7 ± 0.3) (p = 0.052) showed no significant differences between the two protocols.

Conclusion High-pitch 70-kV thoracic CT examinations in immunosuppressed patients resulted in a significantly reduced radiation exposure compared to standard 120-kV CT acquisition without a decrease in image quality.

Key Points:

  • Third-generation dual-source CT units enable high-pitch 70-kV CT examinations of the chest.

  • High-pitch 70-kV CT examinations show a significantly reduced radiation dose compared to standard 120-kV CT examinations.

  • High-pitch 70-kV CT examinations of the chest show comparable objective and subjective image quality.

  • Subjectively deteriorated image noise and sharpness of 70-kV CT did not impact diagnostic confidence.

Citation Format

  • Yel I, Martin SS, Wichmann JL et al. Evaluation of Radiation Dose and Image Quality using High-Pitch 70-kV Chest CT in Immunosuppressed Patients . Fortschr Röntgenstr 2019; 191: 122 – 129

 
  • References

  • 1 Bajaj SK, Tombach B. Respiratory infections in immunocompromised patients: Lung findings using chest computed tomography. Radiology of Infectious Diseases 2017; 4: 29-37
  • 2 Memoli MJ, Athota R, Reed S. et al. The Natural History of Influenza Infection in the Severely Immunocompromised vs Nonimmunocompromised Hosts. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2014; 58: 214-224
  • 3 Köhler JR, Casadevall A, Perfect J. The Spectrum of Fungi That Infects Humans. Cold Spring Harbor Perspectives in Medicine 2015; 5: a019273
  • 4 Ewig S, Höffken G, Kern WV. et al. S3-Leitlinie: Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Prävention – Update 2016. Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin.
  • 5 Brodoefel H, Vogel M, Hebart H. et al. Long-term CT follow-up in 40 non-HIV immunocompromised patients with invasive pulmonary aspergillosis: kinetics of CT morphology and correlation with clinical findings and outcome. American journal of roentgenology 2006; 187: 404-413
  • 6 Campanella F, Rossi L, Giroletti E. Are physicians aware enough of patient radiation protection? Results from a survey among physicians of Pavia District- Italy. BMC health services research 2017; 17: 406
  • 7 Amis Jr. ES, Butler PF, Applegate KE. et al. American College of Radiology white paper on radiation dose in medicine. Journal of the American College of Radiology 2007; 4: 272-284
  • 8 Smith-Bindman R, Lipson J, Marcus R. et al. Radiation Dose Associated with Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer. Archives of internal medicine 2009; 169: 2078-2086
  • 9 Prakash P, Kalra MK, Ackman JB. et al. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 2010; 256: 261-269
  • 10 Bongartz G, Golding S, Jurik A. et al. European Guidelines on Quality Criteria for Computed Tomography. Report EUR 16262 1999
  • 11 Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex-and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010; 257: 158-166
  • 12 Boone J, Strauss K, Cody D. et al. Size-specific dose estimates (SSDE) in pediatric and adult body CT exams: Report of AAPM Task Group 204. 2011
  • 13 Martin SS, Albrecht MH, Wichmann JL. et al. Value of a noise-optimized virtual monoenergetic reconstruction technique in dual-energy CT for planning of transcatheter aortic valve replacement. European radiology 2017; 27: 705-714
  • 14 Bodelle B, Fischbach C, Booz C. et al. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose. European journal of radiology 2017; 89: 208-214
  • 15 Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological assessment 1994; 6: 284
  • 16 Kubo T, Ohno Y, Nishino M. et al. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. European Journal of Radiology Open 2016; 3: 86-94
  • 17 Gordic S, Morsbach F, Schmidt B. et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Investigative radiology 2014; 49: 465-473
  • 18 Wichmann JL, Hu X, Kerl JM. et al. 70 kVp computed tomography pulmonary angiography: potential for reduction of iodine load and radiation dose. J Thorac Imaging 2015; 30: 69-76
  • 19 Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M. et al. CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 2006; 241: 899-907
  • 20 Bodelle B, Klement D, Kerl JM. et al. 70 kV computed tomography of the thorax: valence for computer-assisted nodule evaluation and radiation dose – first clinical results. Acta radiologica (Stockholm, Sweden: 1987) 2014; 55: 1056-1062
  • 21 Newell Jr JD, Fuld MK, Allmendinger T. et al. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software. Investigative radiology 2015; 50: 40
  • 22 Schaller F, Sedlmair M, Raupach R. et al. Noise Reduction in Abdominal Computed Tomography Applying Iterative Reconstruction (ADMIRE). Acad Radiol 2016; 23: 1230-1238
  • 23 Robertson DD, Weiss PJ, Fishman EK. et al. Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants. Journal of computer assisted tomography 1988; 12: 236-241
  • 24 Baumueller S, Winklehner A, Karlo C. et al. Low-dose CT of the lung: potential value of iterative reconstructions. European radiology 2012; 22: 2597-2606
  • 25 Tang K, Wang L, Li R. et al. Effect of low tube voltage on image quality, radiation dose, and low-contrast detectability at abdominal multidetector CT: phantom study. Journal of biomedicine & biotechnology 2012; 2012: 130169
  • 26 Weis M, Henzler T, Nance Jr JW. et al. Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study. Investigative radiology 2017; 52: 155-162
  • 27 Lell MM, May M, Deak P. et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investigative radiology 2011; 46: 116-123
  • 28 Baumueller S, Alkadhi H, Stolzmann P. et al. Computed tomography of the lung in the high-pitch mode: is breath holding still required?. Investigative radiology 2011; 46: 240-245
  • 29 Thomas C, Ketelsen D, Tsiflikas I. et al. Dual-energy computed tomography: is there a penalty in image quality and radiation dose compared with single-energy computed tomography?. Journal of computer assisted tomography 2010; 34: 309-315
  • 30 Lell MM, Scharf M, Eller A. et al. Feasibility of Respiratory-gated High-pitch Spiral CT: Free-breathing Inspiratory Image Quality. Acad Radiol 2016; 23: 406-412
  • 31 Schulz B, Jacobi V, Beeres M. et al. Quantitative analysis of motion artifacts in high-pitch dual-source computed tomography of the thorax. J Thorac Imaging 2012; 27: 382-386
  • 32 Nakagawa M, Ozawa Y, Sakurai K. et al. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease. Pediatric radiology 2015; 45: 1472-1479