Neuroradiologie Scan 2019; 09(01): 47-68
DOI: 10.1055/a-0677-4094
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Embryonale Tumoren des Zentralnervensystems

Embryonal Tumors of the Central Nervous System
Robert Y. Shih
,
Kelly K. Koeller

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Professor Dr. Michael Forsting, Essen
Further Information

Publication History

Publication Date:
07 January 2019 (online)

Die Erkenntnisse zu Biologie und Verhalten der hochmalignen embryonalen Tumoren des Zentralnervensystems nehmen stetig zu. Das schlägt sich auch in ihrer sich über die Jahre wandelnden Terminologie und Klassifizierung nieder. Dieser Artikel stellt wichtige Änderungen des neuen Klassifikationsschemas der Weltgesundheitsorganisation 2016 vor, die für die Diagnostik und Tumorforschung in Zukunft den neuen Standard bilden werden.

Abstract

Embryonal tumors of the central nervous system (CNS) are highly malignant undifferentiated or poorly differentiated tumors of neuroepithelial origin and have been defined as a category in the World Health Organization (WHO) classification since the first edition of the “Blue Book” in 1979. This category has evolved over time to reflect our ever-improving understanding of tumor biology and behavior. With the most recent update in 2016, many previous histologic diagnoses incorporate molecular parameters for the first time (genetically defined entities). While medulloblastoma and atypical teratoid/rhabdoid tumor are familiar carryovers from the 2007 CNS WHO classification, there are major changes to the embryonal tumor category: for example, elimination of the term CNS primitive neuroectodermal tumor and addition of a new genetically defined entity, embryonal tumor with multilayered rosettes, C19MC-altered. The purpose of this article is to discuss both the radiologic-pathologic features of CNS embryonal tumors and the new molecularly defined types/subtypes that will become the standard classification/terminology for future diagnoses and tumor research.

Kernaussagen
  • Embryonale Tumoren des ZNS wurden in der WHO-Klassifikation seit der 1. Auflage (1979) als Kategorie definiert. Seit der 4. Auflage (2007) wurden die 3 Typen Medulloblastom, AT/RT und PNET unterschieden.

  • In einer aktuellen Überarbeitung der 4. Auflage (2016) wurden genetisch definierte Subtypen des Medulloblastoms aufgenommen und der Terminus „PNET des ZNS“ durch „embryonaler Tumor des ZNS, NOS“, ersetzt. Der Begriff „Ependymoblastom“ wurde durch die genetisch definierte Entität „ETMR“ abgelöst.

  • Das erstmals im Jahr 1924 beschriebene Medulloblastom stellt den prototypischen embryonalen Tumor des ZNS dar und ist für annähernd ⅔ aller Fälle verantwortlich. Klassischerweise werden diese Tumoren als zerebelläre Raumforderung in Mittellinienorientierung bei Kindern beschrieben. Allerdings ist rund ¼ dieser Tumoren seitlich lokalisiert und wiederum ¼ manifestiert sich im Erwachsenenalter.

  • Die relativ neuen Entitäten AT/RT und ETMR wurden im Jahr 1996 bzw. 2010 offiziell eingeführt. Diese Tumoren kommen weniger häufig vor, verhalten sich aggressiver und treten eher bei sehr jungen Kindern (im Alter von unter 4 Jahren) auf. Diese Tumoren sind nun genetisch definiert, d. h. durch einen Verlust der INI1-Expression bzw. eine C19MC-Amplifikation.

  • Die histologischen und radiologischen Erscheinungsbilder von embryonalen Tumoren weisen erhebliche Überschneidungen auf. Ihre Bildgebungsmerkmale sind Ausdruck ihrer Zellularität. Diese Kategorie sollte daher bei allen ZNS-Tumoren in Betracht gezogen werden, die bei jungen Patienten auftreten und eine starke Densität in CT-Aufnahmen und eine niedrige Signalintensität auf T2w Bildern bzw. ADC-Karten aufweisen.

 
  • Literatur

  • 1 Scheithauer BW. Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol 2009; 19: 551-564
  • 2 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl.) 2007; 114: 97-109
  • 3 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl.) 2016; 131: 803-820
  • 4 Cervoni L, Celli P, Trillo G. et al. Ependymoblastoma: a clinical review. Neurosurg Rev 1995; 18: 189-192
  • 5 Ostrom QT, Gittleman H, Xu J. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol 2016; 18 (Suppl. 05) v1-v75
  • 6 Ellison DW, Eberhart CG, Pietsch T. et al. Medulloblastoma. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. 4th. ed. Lyon, France: IARC; 2016: 184-187
  • 7 Farwell JR, Dohrmann GJ, Flannery JT. Medulloblastoma in childhood: an epidemiological study. J Neurosurg 1984; 61: 657-664
  • 8 Partap S, Curran EK, Propp JM. et al. Medulloblastoma incidence has not changed over time: a CBTRUS study. J Pediatr Hematol Oncol 2009; 31: 970-971
  • 9 Merchant TE, Pollack IF, Loeffler JS. Brain tumors across the age spectrum: biology, therapy, and late effects. Semin Radiat Oncol 2010; 20: 58-66
  • 10 Roberts RO, Lynch CF, Jones MP. et al. Medulloblastoma: a population-based study of 532 cases. J Neuropathol Exp Neurol 1991; 50: 134-144
  • 11 Curran EK, Sainani KL, Le GM. et al. Gender affects survival for medulloblastoma only in older children and adults: a study from the Surveillance Epidemiology and End Results registry. Pediatr Blood Cancer 2009; 52: 60-64
  • 12 Yamashita Y, Handa H, Toyama M. Medulloblastoma in two brothers. Surg Neurol 1975; 4: 225-227
  • 13 Maleci A, Cervoni L, Delfini R. Medulloblastoma in children and in adults: a comparative study. Acta Neurochir (Wien) 1992; 119: 62-67
  • 14 Blaser SI, Harwood-Nash DC. Neuroradiology of pediatric posterior fossa medulloblastoma. J Neurooncol 1996; 29: 23-34
  • 15 Al-Mefty O, Jinkins JR, el-Senoussi M. et al. Medulloblastomas: a review of modern management with a report on 75 cases. Surg Neurol 1985; 24 : 606-624
  • 16 Park TS, Hoffman HJ, Hendrick EB. et al. Medulloblastoma: clinical presentation and management – experience at the Hospital for Sick Children, Toronto, 1950–1980. J Neurosurg 1983; 58: 543-552
  • 17 Koeller KK, Rushing EJ. Medulloblastoma: a comprehensive review with radiologic-pathologic correlation. RadioGraphics 2003; 23: 1613-1637
  • 18 Cogen PH, McDonald JD. Tumor suppressor genes and medulloblastoma. J Neurooncol 1996; 29 : 103-112
  • 19 Ellison D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002; 28: 257-282
  • 20 Ellison DW, Dalton J, Kocak M. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol (Berl.) 2011; 121: 381-396
  • 21 Taylor MD, Northcott PA, Korshunov A. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol (Berl.) 2012; 123: 465-472
  • 22 Eberhart CG, Giangaspero F, Ellison DW. et al. Medulloblastoma, SHH-activated. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. 4th. ed. Lyon, France: IARC; 2016: 190-192
  • 23 Gibson P, Tong Y, Robinson G. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010; 468: 1095-1099
  • 24 Ellison DW, Giangaspero F, Eberhart CG. et al. Medulloblastoma, WNT-activated. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. 4th. ed. Lyon, France: IARC; 2016: 188-189
  • 25 Ellison DW, Eberhart CG, Pfister S. Medulloblastoma, non-WNT/non-SHH. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. 4th. ed. Lyon, France: IARC; 2016: 193
  • 26 Ryan SL, Schwalbe EC, Cole M. et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol (Berl.) 2012; 123: 501-513
  • 27 Ellison DW, Eberhart CG, Giangaspero F. et al. Medulloblastoma, classic. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. Lyon, France: IARC; 2016: 194
  • 28 Rutkowski S, Bode U, Deinlein F. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005; 352 : 978-986
  • 29 Pietsch T, Ellison DW, Haapasalo H. et al. Desmoplastic/nodular medulloblastoma. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. Lyon, France: IARC; 2016: 195-197
  • 30 Giangaspero F, Ellison DW, Eberhart CG. et al. Medulloblastoma with extensive nodularity. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. 4th. ed. Lyon, France: IARC; 2016: 198-199
  • 31 Rutkowski S, von Hoff K, Emser A. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 2010; 28: 4961-4968
  • 32 Agrawal D, Singhal A, Hendson G. et al. Gyriform differentiation in medulloblastoma: a radiological predictor of histology. Pediatr Neurosurg 2007; 43: 142-145
  • 33 Garrè ML, Cama A, Bagnasco F. et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome – a new clinical perspective. Clin Cancer Res 2009; 15: 2463-2471
  • 34 von Hoff K, Hartmann W, von Bueren AO. et al. Large cell/anaplastic medulloblastoma: outcome according to myc status, histopathological, and clinical risk factors. Pediatr Blood Cancer 2010; 54: 369-376
  • 35 Ellison DW, Giangaspero F, Eberhart CG. et al. Large cell/anaplastic medulloblastoma. In: Louis DN, Ohgaki H, Wiestler OD. et al., eds. WHO classification of tumours of the central nervous system. Lyon, France: IARC; 2016: 200
  • 36 Ramaswamy V, Remke M, Bouffet E. et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 2013; 14: 1200-1207
  • 37 Loeffler JS, Kretschmar CS, Sallan SE. et al. Pre-radiation chemotherapy for infants and poor prognosis children with medulloblastoma. Int J Radiat Oncol Biol Phys 1988; 15: 177-181
  • 38 Packer RJ, Siegel KR, Sutton LN. et al. Leptomeningeal dissemination of primary central nervous system tumors of childhood. Ann Neurol 1985; 18: 217-221
  • 39 Stavrou T, Dubovsky EC, Reaman GH. et al. Intracranial calcifications in childhood medulloblastoma: relation to nevoid basal cell carcinoma syndrome. AJNR Am J Neuroradiol 2000; 21: 790-794
  • 40 Pierce TT, Provenzale JM. Evaluation of apparent diffusion coefficient thresholds for diagnosis of medulloblastoma using diffusionsweighted imaging. Neuroradiol J 2014; 27: 63-74
  • 41 Pierce T, Kranz PG, Roth C. et al. Use of apparent diffusion coefficient values for diagnosis of pediatric posterior fossa tumors. Neuroradiol J 2014; 27: 233-244
  • 42 Han C, Zhao L, Zhong S. et al. A comparison of high b-value vs standard b-value diffusionsweighted magnetic resonance imaging at 3.0 T for medulloblastomas. Br J Radiol 2015; 88: 20150220
  • 43 Pillai S, Singhal A, Byrne AT. et al. Diffusion-weighted imaging and pathological correlation in pediatric medulloblastomas: “They are not always restricted!”. Childs Nerv Syst 2011; 27: 1407-1411
  • 44 Yeom KW, Mobley BC, Lober RM. et al. Distinctive MRI features of pediatric medulloblastoma subtypes. AJR Am J Roentgenol 2013; 200: 895-903
  • 45 Rodriguez Gutierrez D, Awwad A, Meijer L. et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 2014; 35: 1009-1015
  • 46 Vicente J, Fuster-Garcia E, Tortajada S. et al. Accurate classification of childhood brain tumours by in vivo ¹H MRS: a multi-centre study. Eur J Cancer 2013; 49: 658-667
  • 47 Zukotynski K, Fahey F, Kocak M. et al. 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the Pediatric Brain Tumor Consortium. J Nucl Med 2014; 55: 1473-1480
  • 48 Yeom KW, Mitchell LA, Lober RM. et al. Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 2014; 35: 395-401
  • 49 Li MD, Forkert ND, Kundu P. et al. Brain perfusion and diffusion abnormalities in children treated for posterior fossa brain tumors. J Pediatr 2017; 185: 173.e3-180.e3
  • 50 David KM, Casey AT, Hayward RD. et al. Medulloblastoma: Is the 5-year survival rate improving? A review of 80 cases from a single institution. J Neurosurg 1997; 86: 13-21
  • 51 Wiener MD, Boyko OB, Friedman HS. et al. False-positive spinal MR findings for subarachnoid spread of primary CNS tumor in postoperative pediatric patients. AJNR Am J Neuroradiol 1990; 11: 1100-1103
  • 52 Burger PC, Yu IT, Tihan T. et al. Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma – a Pediatric Oncology Group study. Am J Surg Pathol 1998; 22 : 1083-1092
  • 53 Bhattacharjee M, Hicks J, Langford L. et al. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. Ultrastruct Pathol 1997; 21 : 369-378
  • 54 Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg 1996; 85 : 56-65
  • 55 Judkins AR, Burger PC, Hamilton RL. et al. INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 2005; 64: 391-397
  • 56 Hasselblatt M, Gesk S, Oyen F. et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 2011; 35: 933-935
  • 57 Harris TJ, Donahue JE, Shur N. et al. Case 168: rhabdoid predisposition syndrome – familial cancer syndromes in children. Radiology 2011; 259: 298-302
  • 58 Lau CS, Mahendraraj K, Chamberlain RS. Atypical teratoid rhabdoid tumors: a population-based clinical outcomes study involving 174 patients from the Surveillance, Epidemiology, and End Results database (1973–2010). Cancer Manag Res 2015; 7: 301-309
  • 59 Moeller KK, Coventry S, Jernigan S. et al. Atypical teratoid/rhabdoid tumor of the spine. AJNR Am J Neuroradiol 2007; 28: 593-595
  • 60 Warmuth-Metz M, Bison B, Gerber NU. et al. Bone involvement in atypical teratoid/rhabdoid tumors of the CNS. AJNR Am J Neuroradiol 2013; 34: 2039-2042
  • 61 Oh CC, Orr BA, Bernardi B. et al. Atypical teratoid/rhabdoid tumor (ATRT) arising from the 3rd cranial nerve in infants: a clinical-radiological entity?. J Neurooncol 2015; 124: 175-183
  • 62 El-Nabbout B, Shbarou R, Glasier CM. et al. Primary diffuse cerebral leptomeningeal atypical teratoid rhabdoid tumor: report of the first case. J Neurooncol 2010; 98: 431-434
  • 63 Arslanoglu A, Aygun N, Tekhtani D. et al. Imaging findings of CNS atypical teratoid/rhabdoid tumors. AJNR Am J Neuroradiol 2004; 25: 476-480
  • 64 Meyers SP, Khademian ZP, Biegel JA. et al. Primary intracranial atypical teratoid/rhabdoid tumors of infancy and childhood: MRI features and patient outcomes. AJNR Am J Neuroradiol 2006; 27: 962-971
  • 65 Cheng YC, Lirng JF, Chang FC. et al. Neuroradiological findings in atypical teratoid/rhabdoid tumor of the central nervous system. Acta Radiol 2005; 46: 89-96
  • 66 Koral K, Mathis D, Gimi B. et al. Common pediatric cerebellar tumors: correlation between cell densities and apparent diffusion coefficient metrics. Radiology 2013; 268: 532-537
  • 67 Koral K, Zhang S, Gargan L. et al. Diffusion MRI improves the accuracy of preoperative diagnosis of common pediatric cerebellar tumors among reviewers with different experience levels. AJNR Am J Neuroradiol 2013; 34: 2360-2365
  • 68 Rumboldt Z, Camacho DL, Lake D. et al. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 2006; 27: 1362-1369
  • 69 Kralik SF, Taha A, Kamer AP. et al. Diffusion imaging for tumor grading of supratentorial brain tumors in the first year of life. AJNR Am J Neuroradiol 2014; 35: 815-823
  • 70 Ho CY, Cardinal JS, Kamer AP. et al. Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. AJNR Am J Neuroradiol 2016; 37: 544-551
  • 71 Plaza MJ, Borja MJ, Altman N. et al. Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol 2013; 200: 1115-1124
  • 72 Biswas A, Kashyap L, Kakkar A. et al. Atypical teratoid/rhabdoid tumors: challenges and search for solutions. Cancer Manag Res 2016; 8: 115-125
  • 73 Johann PD, Erkek S, Zapatka M. et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 2016; 29 : 379-393
  • 74 Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol 1993; 3: 255-268
  • 75 Rorke LB. The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 1983; 42: 1-15
  • 76 Eberhart CG, Brat DJ, Cohen KJ. et al. Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 2000; 3: 346-352
  • 77 Pfister S, Remke M, Castoldi M. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol (Berl.) 2009; 117: 457-464
  • 78 Korshunov A, Remke M, Gessi M. et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol (Berl.) 2010; 120: 253-260
  • 79 Korshunov A, Ryzhova M, Jones DT. et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol (Berl.) 2012; 124: 875-881
  • 80 Spence T, Sin-Chan P, Picard D. et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol (Berl.) 2014; 128: 291-303
  • 81 Wesseling P. Embryonal tumor with multilayered rosettes (ETMR): signed, sealed, delivered. Acta Neuropathol (Berl.) 2014; 128: 305-308
  • 82 Picard D, Miller S, Hawkins CE. et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol 2012; 13 : 838-848
  • 83 Zagzag D, Miller DC, Knopp E. et al. Primitive neuroectodermal tumors of the brainstem: investigation of seven cases. Pediatrics 2000; 106: 1045-1053
  • 84 Benesch M, Sperl D, von Bueren AO. et al. Primary central nervous system primitive neuroectodermal tumors (CNS-PNETs) of the spinal cord in children: four cases from the German HIT database with a critical review of the literature. J Neurooncol 2011; 104: 279-286
  • 85 Altman N, Fitz CR, Chuang S. et al. Radiologic characteristics of primitive neuroectodermal tumors in children. AJNR Am J Neuroradiol 1985; 6 : 15-18
  • 86 Nowak J, Seidel C, Berg F. et al. MRI characteristics of ependymoblastoma: results from 22 centrally reviewed cases. AJNR Am J Neuroradiol 2014; 35: 1996-2001
  • 87 Nowak J, Seidel C, Pietsch T. et al. Systematic comparison of MRI findings in pediatric ependymoblastoma with ependymoma and CNS primitive neuroectodermal tumor not otherwise specified. Neuro Oncol 2015; 17: 1157-1165
  • 88 Majós C, Alonso J, Aguilera C. et al. Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 2002; 225 : 556-566
  • 89 Kovanlikaya A, Panigrahy A, Krieger MD. et al. Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 2005; 236: 1020-1025
  • 90 Lester RA, Brown LC, Eckel LJ. et al. Clinical outcomes of children and adults with central nervous system primitive neuroectodermal tumor. J Neurooncol 2014; 120: 371-379
  • 91 Gerber NU, von Hoff K, von Bueren AO. et al. Outcome of 11 children with ependymoblastoma treated within the prospective HIT-trials between 1991 and 2006. J Neurooncol 2011; 102: 459-469
  • 92 Sturm D, Orr BA, Toprak UH. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 2016; 164: 1060-1072
  • 93 Zaky W. Revisiting management of pediatric brain tumors with new molecular insights. Cell 2016; 164: 844-846