Rofo 2019; 191(03): 209-215
DOI: 10.1055/a-0690-9050
Experimental Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Untersuchung der Wirkungen eines statischen Magnetfeldes auf ein neu-entwickeltes magnetisch ophthalmologisches Implantat in einem 3 Tesla MRT

Article in several languages: English | deutsch
Ann-Kathrin Bodenstein
1   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Matthias Lüpke
1   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Christian Seiler
1   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Frank Goblet
1   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Stephan Nikolic
2   eye clinic at Aegi, Augenärzte am Aegi, Hannover, Germany
,
Ulf Hinze
3   Nanotechnology Department, Laser Zentrum Hannover e.V, Hannover, Germany
,
Boris Chichkov
4   Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Germany
,
Claudia Windhövel
5   Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Jan-Peter Bach
5   Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Lisa Harder
5   Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Hermann Seifert
1   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
› Author Affiliations
Further Information

Publication History

29 November 2017

06 June 2018

Publication Date:
11 October 2018 (online)

Zusammenfassung

Ziel Das Ziel dieser Studie ist es, die Wirkungen eines statischen Magnetfeldes während einer MRT-Untersuchung auf ein magnetisch-ophthalmologisches Implantat in vitro zu bestimmen. Das Implantat besteht aus Silikon und einem eingebetteten Metallplättchen, das zur Öffnung einer Ventilklappe dient. Es wurden zehn unterschiedliche Größen des Metallplättchens untersucht, um die Abhängigkeit der magnetischen Kräfte von der Größe des Metallplättchens zu charakterisieren.

Material und Methode Es wurden 10 Metallplättchen mit Größen zwischen 8 × 8 mm2 und 1 × 1 mm2 und 2 Prototypen des Implantats an einem 3 Tesla-MRT untersucht. Im statischen Magnetfeld wurde die Translationskraft mithilfe des Fadentests (ASTM F 2052) und das Drehmoment anhand einer 5-Punkte-Graduierung nach Sommer et al. [11] bestimmt (Grad 0: kein Drehmoment, Grad 4: starkes Drehmoment). Die beiden Prototypen wurden im Bereich des höchsten Feldgradienten der Translationskraft und im Isozentrum des MRTs dem Drehmoment ausgesetzt und das Verhalten der Ventilklappe wurde visuell auf Funktionalität untersucht. Zusätzlich wurden mit einem Kraftmesser die Fixierungsnähte des Implantats und das Skleragewebe des Auges dem tausendfachen der errechneten Translationskraft ausgesetzt.

Ergebnisse Die Translationskraft war in der Regel fast 10-mal so groß wie die Gewichtskraft FG eines Plättchens. Die Metallplättchen waren einem starken Drehmoment ausgesetzt (Stufe 3 bis 4). Die Nähte und das Gewebe hielten mehr als dem Tausendfachen der ermittelten Translationskraft stand. Im MRT war kein spontanes, unkontrolliertes Öffnen der Ventilklappe sichtbar, in dessen Folge der Augeninnendruck stark abnehmen könnte.

Schlussfolgerung Durch die geringe Größe, die Silikonummantelung und die Fixation durch die Nähte können die Translationskraft und das Drehmoment kompensiert werden.

Kernaussagen:

  • Die hohen magnetischen Kräfte werden von der Silikonummantelung und den Haltenähten kompensiert.

  • Das magnetisch-ophthalmologische Implantat wird durch das MRT-Magnetfeld nicht in seiner Funktion eingeschränkt.

  • Das Implantat kann als bedingt MRT-sicher angesehen werden.

Zitierweise

  • Bodenstein A, Lüpke M, Seiler C et al. Evaluation of the static magnetic field interactions for a newly developed magnetic ophthalmic implant at 3 Tesla MRI. Fortschr Röntgenstr 2019; 191: 209 – 215

 
  • References

  • 1 Kelly WM, Paglen PG, Pearson JA. et al. Ferromagnetism of intraocular foreign body causes unilateral blindness after MR study. American journal of neuroradiology 1986; 7: 243-245
  • 2 Seibold LK, Rorrer RA, Kahook MY. MRI of the Ex-PRESS stainless steel glaucoma drainage device. The British journal of ophthalmology 2011; 95: 251-254
  • 3 Davis P, Crooks L, Arakawa M. et al. Potential hazards in NMR imaging: heating effects of changing magnetic fields and RF fields on small metallic implants. American Journal of Roentgenology 1981; 137: 857-860
  • 4 Geffen N, Trope GE, Alasbali T. et al. Is the Ex-PRESS glaucoma shunt magnetic resonance imaging safe?. Journal of glaucoma 2010; 19: 116-118
  • 5 Ayyıldız S, Kamburoğlu K, Sipahi C. et al. Radiofrequency heating and magnetic field interactions of fixed partial dentures during 3-tesla magnetic resonance imaging. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2013; 116: 640-647
  • 6 Biberthaler P. 10 frequently asked questions about magnetic resonance imaging in patients with metal implants. Der Unfallchirurg 2009; 112: 521-524
  • 7 Choritz L, Wegner M, Förch R. et al. Pathophysiology of fibrotic encapsulation of episcleral glaucoma drainage implants. Der Ophthalmologe 2013; 110: 714-721
  • 8 Thieme H. Newest developments and assessment of epibulbar glaucoma drainage implants. Der Ophthalmologe 2013; 110: 712-713
  • 9 Philips. Magnetic Resonance, Technical Description, Intera 1.5T Release 2.6.1, Achieva 1.5T / 3.0T / XR Release 2.6.1, Panorama HFO Release 2.6.1. In: Royal Philips Electronics N.V. 2008: 3-7
  • 10 Kemper J, Klocke A, Kahl-Nieke B. et al. Kieferorthopädische Brackets in der Hochfeld-Magnetresonanz-Tomografie: Experimentelle Beurteilung magnetischer Anziehungs- und Rotationskräfte bei 3 Tesla. Fortschr Röntgenstr 2005; 177: 1691-1698
  • 11 Sommer T, Maintz D, Schmiedel A. et al. Hochfeld-Magnetresonanztomografie: Magnetische Anziehungs- und Rotationskräfte auf metallische Implantate bei 3.0 T. Fortschr Röntgenstr 2004; 176: 731-738
  • 12 Kangarlu A, Shellock FG. Aneurysm clips: evaluation of magnetic field interactions with an 8.0 T MR system. Journal of Magnetic Resonance Imaging 2000; 12: 107-111
  • 13 Shellock FG, Kanal E. Yasargil aneurysm clips: evaluation of interactions with a 1.5-T MR system. Radiology 1998; 207: 587-591
  • 14 Philips. Magnetic Resonance, Technical Description, Intera 1.5T Release 2.6.1, Achieva 1.5T / 3.0T / XR Release 2.6.1, Panorama HFO Release 2.6.1. In: Royal Philips Electronics N.V. 2008: 3-7
  • 15 Mühlenweg M, Schaefers G, Trattnig S. Sicherheitsaspekte in der Hochfeld-Magnetresonanztomografie. Der Radiologe 2008; 48: 258-267
  • 16 Mühlenweg M, Schaefers G, Trattnig S. Physikalische Wechselwirkungen in der MRT. Der Radiologe 2015; 55: 638-648
  • 17 Shellock FG, Shellock VJ. Metallic stents: evaluation of MR imaging safety. American journal of roentgenology 1999; 173: 543-547
  • 18 Williams MD, Antonelli PJ, Williams LS. et al. Middle ear prosthesis displacement in high-strength magnetic fields. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2001; 22: 158-161
  • 19 Klocke A, Kahl-Nieke B, Adam G. et al. Magnetic Forces on Orthodontic Wires in High Field Magnetic Resonance Imaging (MRI) at 3 Tesla. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie 2006; 67: 424-429
  • 20 New P, Rosen B, Brady TJ. et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 1983; 147: 139-148
  • 21 Kagetsu N, Litt A. Important considerations in measurement of attractive force on metallic implants in MR imagers. Radiology 1991; 179: 505-508
  • 22 Klocke A, Kemper J, Schulze D. et al. Magnetic Field Interactions of Orthodontic Wires during Magnetic Resonance Imaging (MRI) at 1.5 Tesla. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie 2005; 66: 279-287
  • 23 Sachsenweger M, Klauß V, Nasemann J. et al. Duale Reihe Augenheilkunde. Thieme; 2002
  • 24 Nogueira M, Shellock FG. Otologic bioimplants: ex vivo assessment of ferromagnetism and artifacts at 1.5 T. American Journal of Roentgenology 1994; 163: 1472-1473
  • 25 Applebaum EL, Valvassori GE. Effects of magnetic resonance imaging fields on stapedectomy prostheses. Archives of Otolaryngology 1985; 111: 820-821