Rofo 2019; 191(04): 311-322
DOI: 10.1055/a-0690-9365
Review
© Georg Thieme Verlag KG Stuttgart · New York

Leitliniengerechte Therapie der PAVK – Aktuelle Studienlage und Ausblick

Article in several languages: English | deutsch
Jonas Kersting
1   Radiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
,
Lars Kamper
1   Radiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
,
Marco Das
2   Radiology, HELIOS Klinikum Duisburg, Germany
,
Patrick Haage
1   Radiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
› Author Affiliations
Further Information

Publication History

22 March 2018

01 August 2018

Publication Date:
21 January 2019 (online)

Zusammenfassung

Hintergrund Die periphere arterielle Verschlusskrankheit (PAVK) hat aufgrund des demografischen Wandels eine zunehmende gesundheitsökonomische Relevanz. PAVK-Patienten sind häufig mehrfach vorerkrankt und dementsprechend komplex und interdisziplinär zu behandeln. Der endovaskulär-interventionellen Therapie fällt dank rascher technischer Entwicklungen eine immer zentralere Rolle zu.

Methode Allgemeines Review mit Literaturrecherche, ausgehend von der aktuellen deutschen S3-Leitlinie zur Therapie der PAVK sowie aktuellen internationalen Leitlinien. Im Hinblick auf moderne Therapieverfahren fand die aktuelle Studienlage Berücksichtigung.

Ergebnisse Die Kenntnis aktueller Leitlinien und Handlungsempfehlungen sowie neuer therapeutischer Tendenzen und Ansätze ist essenziell zur suffizienten Behandlung von PAVK-Patienten. Zudem ist eine enge Zusammenarbeit zwischen interventioneller Radiologie und Gefäßchirurgie der Schlüssel zum Erfolg. Neben konservativen Ansätzen und den Bypass-OP-Verfahren haben die endovaskulären Ansätze stark an Bedeutung gewonnen. Diese sind in den PAVK-Stadien TASC A und B seit vielen Jahren Methode der Wahl und zeigen nunmehr vielversprechende Ergebnisse in der Behandlung von diffizilen TASC-C- und -D-Konstellationen. Eine primär endovaskuläre Strategie ist in einer Vielzahl der Fälle leitliniengerecht.

Schlussfolgerung Die primär endovaskuläre Vorgehensweise ist mittlerweile bei der Mehrzahl auch komplexer Läsionen der Becken-Bein-Achse zum Standard geworden. Der endovaskuläre Ansatz zeigt läsionsbezogen gut belegte Vorteile gegenüber der Bypass-Chirurgie, so zum Beispiel im Unterschenkelsegment eine Senkung der Mortalität. Weitere Evidenz wird zukünftig durch mehrere großangelegte randomisierte Multicenterstudien erwartet.

Kernaussagen:

  • Suffiziente Diagnostik essenziell zur Einordnung und Therapiefindung bei PAVK

  • Therapieentscheidung idealerweise in interdisziplinärer Fallkonferenz

  • Ausschöpfung konservativer sowie medikamentöser Therapie vor Intervention im Stadium der intermittierenden Claudicatio

  • Primär endovaskulärer Ansatz bei supra- und infrainguinalen Läsionen

  • Zusätzliche Evidenz von kommenden randomisierten Studien zu erwarten

Zitierweise

  • Kersting J, Kamper L, Das M et al. Guideline-Oriented Therapy of Lower Extremity Peripheral Artery Disease (PAD) – Current Data and Perspectives. Fortschr Röntgenstr 2019; 191: 311 – 322

 
  • References

  • 1 Lawall H, Huppert P, Zemmrich CS. et al. S3-Leitlinie PAVK – Diagnostik, Therapie und Nachsorge der peripheren arteriellen Verschlusskrankheit. Vasa 2016; 45 (Suppl. 95) 1-100 . doi:10.1024/0301-1526/a000579
  • 2 Malyar N, Furstenberg T, Wellmann J. et al. Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: a nationwide population-based analysis. Eur Heart J 2013; 34: 2706-2714 . doi:eht288 [pii] 10.1093/eurheartj/eht288
  • 3 Diehm C, Schuster A, Allenberg JR. et al. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis 2004; 172: 95-105 . doi:S0021-9150(03)00204-1 [pii]
  • 4 Krause D, Burghaus I, Thiem U. et al. The risk of peripheral artery disease in older adults – seven-year results of the getABI study. Vasa 2016; 45: 403-410 . doi:10.1024/0301-1526/a000556
  • 5 Collins R, Burch J, Cranny G. et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ 2007; 334: 1257 . doi:bmj.39217.473275.55 [pii] 10.1136/bmj.39217.473275.55
  • 6 McDonald JS, McDonald RJ, Lieske JC. et al. Risk of Acute Kidney Injury, Dialysis, and Mortality in Patients With Chronic Kidney Disease After Intravenous Contrast Material Exposure. Mayo Clin Proc 2015; 90: 1046-1053 . doi:S0025-6196(15)00468-1 [pii] 10.1016/j.mayocp.2015.05.016
  • 7 Healy DA, Boyle EM, Clarke Moloney M. et al. Contrast-enhanced magnetic resonance angiography in diabetic patients with infra-genicular peripheral arterial disease: systematic review. Int J Surg 2013; 11: 228-232 . doi:S1743-9191(13)00032-0 [pii] 10.1016/j.ijsu.2013.02.001
  • 8 Owen AR, Roditi GH. Peripheral arterial disease: the evolving role of non-invasive imaging. Postgrad Med J 2011; 87: 189-198 . doi:pgmj.2009.082040 [pii] 10.1136/pgmj.2009.082040
  • 9 Behrendt CA, Heidemann F, Haustein K. et al. Percutaneous endovascular treatment of infrainguinal PAOD: Results of the PSI register study in 74 German vascular centers. Gefasschirurgie 2017; 22: 17-27 . doi:10.1007/s00772-016-0202-2202 [pii]
  • 10 Alahdab F, Wang AT, Elraiyah TA. et al. A systematic review for the screening for peripheral arterial disease in asymptomatic patients. J Vasc Surg 2015; 61: 42S-53S . doi:S0741-5214(14)02283-6 [pii] 10.1016/j.jvs.2014.12.008
  • 11 Parmenter BJ, Dieberg G, Smart NA. Exercise training for management of peripheral arterial disease: a systematic review and meta-analysis. Sports Med 2015; 45: 231-244 . doi:10.1007/s40279-014-0261-z
  • 12 Jaff MR, White CJ, Hiatt WR. et al. An Update on Methods for Revascularization and Expansion of the TASC Lesion Classification to Include Below-the-Knee Arteries: A Supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II): The TASC Steering Comittee. Ann Vasc Dis 2015; 8: 343-357 . doi:10.3400/avd.tasc.15-01000 avd.tasc.15-01000 [pii]
  • 13 Gerhard-Herman MD, Gornik HL, Barrett C. et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017; 135: e726-e779 . doi:CIR.0000000000000471 [pii] 10.1161/CIR.0000000000000471
  • 14 Landgraf R. National practice guideline therapy of type 2 diabetes. MMW Fortschr Med 2014; 156 Spec No 1: 76-78
  • 15 Mills Sr JL, Conte MS, Armstrong DG. et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg 2014; 59: 220-234 e221-e222 . doi:S0741-5214(13)01515-2 [pii] 10.1016/j.jvs.2013.08.003
  • 16 Manzi M, Palena L, Cester G. Endovascular techniques for limb salvage in diabetics with crural and pedal disease. J Cardiovasc Surg (Torino) 2011; 52: 485-492 . doi:R37116843 [pii]
  • 17 Adam DJ, Beard JD, Cleveland T. et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366: 1925-1934 . doi:S0140-6736(05)67704-5 [pii] 10.1016/S0140-6736(05)67704-5
  • 18 Leng GC, Fowler B, Ernst E. Exercise for intermittent claudication. Cochrane Database Syst Rev 2000; CD000990. DOI: CD000990 [pii] 10.1002/14651858.CD000990.
  • 19 Greenhalgh RM, Belch JJ, Brown LC. et al. The adjuvant benefit of angioplasty in patients with mild to moderate intermittent claudication (MIMIC) managed by supervised exercise, smoking cessation advice and best medical therapy: results from two randomised trials for stenotic femoropopliteal and aortoiliac arterial disease. Eur J Vasc Endovasc Surg 2008; 36: 680-688 . doi:S1078-5884(08)00544-3 [pii] 10.1016/j.ejvs.2008.10.007
  • 20 Momsen AH, Jensen MB, Norager CB. et al. Drug therapy for improving walking distance in intermittent claudication: a systematic review and meta-analysis of robust randomised controlled studies. Eur J Vasc Endovasc Surg 2009; 38: 463-474 . doi:S1078-5884(09)00298-6 [pii] 10.1016/j.ejvs.2009.06.002
  • 21 Indes JE, Pfaff MJ, Farrokhyar F. et al. Clinical outcomes of 5358 patients undergoing direct open bypass or endovascular treatment for aortoiliac occlusive disease: a systematic review and meta-analysis. J Endovasc Ther 2013; 20: 443-455 . doi:10.1583/13-4242.1
  • 22 Gerhard-Herman MD, Gornik HL, Barrett C. et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc Med 2017; 22: NP1-NP43 . doi:10.1177/1358863X17701592
  • 23 Grimme FA, Goverde PC, Verbruggen PJ. et al. Editorʼs Choice--First Results of the Covered Endovascular Reconstruction of the Aortic Bifurcation (CERAB) Technique for Aortoiliac Occlusive Disease. Eur J Vasc Endovasc Surg 2015; 50: 638-647 . doi:S1078-5884(15)00540-7 [pii] 10.1016/j.ejvs.2015.06.112
  • 24 Krankenberg H, Schluter M, Steinkamp HJ. et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST). Circulation 2007; 116: 285-292 . doi:CIRCULATIONAHA.107.689141 [pii] 10.1161/CIRCULATIONAHA.107.689141
  • 25 Laird JR, Katzen BT, Scheinert D. et al. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the RESILIENT randomized trial. J Endovasc Ther 2012; 19: 1-9 . doi:10.1583/11-3627.1
  • 26 Cassese S, Byrne RA, Ott I. et al. Paclitaxel-coated versus uncoated balloon angioplasty reduces target lesion revascularization in patients with femoropopliteal arterial disease: a meta-analysis of randomized trials. Circ Cardiovasc Interv 2012; 5: 582-589 . doi:CIRCINTERVENTIONS.112.969972 [pii] 10.1161/CIRCINTERVENTIONS.112.969972
  • 27 Dake MD, Ansel GM, Jaff MR. et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation 2016; 133: 1472-1483 ; discussion 1483. doi:CIRCULATIONAHA.115.016900 [pii] 10.1161/CIRCULATIONAHA.115.016900
  • 28 De Cock E, Sapoval M, Julia P. et al. A budget impact model for paclitaxel-eluting stent in femoropopliteal disease in France. Cardiovasc Intervent Radiol 2013; 36: 362-370 . doi:10.1007/s00270-012-0494-x
  • 29 Katsanos K, Geisler BP, Garner AM. et al. Economic analysis of endovascular drug-eluting treatments for femoropopliteal artery disease in the UK. BMJ Open 2016; 6: e011245 . doi:bmjopen-2016-011245 [pii] 10.1136/bmjopen-2016-011245
  • 30 Zeller T, Langhoff R, Rocha-Singh KJ. et al. Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency: Twelve-Month Results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 2017; 10: e004848 . doi:CIRCINTERVENTIONS.116.004848 [pii] 10.1161/CIRCINTERVENTIONS.116.004848
  • 31 Baumhakel M, Chkhetia S, Kindermann M. Treatment of femoro-popliteal lesions with scoring and drug-coated balloon angioplasty: 12-month results of the DCB-Trak registry. Diagn Interv Radiol 2018; 24: 153-157 . doi:10.5152/dir.2018.17466
  • 32 Dominguez 3rd A, Bahadorani J. et al. Endovascular therapy for critical limb ischemia. Expert Rev Cardiovasc Ther 2015; 13: 429-444 . doi:10.1586/14779072.2015.1019472
  • 33 Norgren L, Hiatt WR, Dormandy JA. et al. Inter-society consensus for the management of peripheral arterial disease. Int Angiol 2007; 26: 81-157
  • 34 Reinecke H, Unrath M, Freisinger E. et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J 2015; 36: 932-938 . doi:ehv006 [pii] 10.1093/eurheartj/ehv006
  • 35 Jongkind V, Akkersdijk GJ, Yeung KK. et al. A systematic review of endovascular treatment of extensive aortoiliac occlusive disease. J Vasc Surg 2010; 52: 1376-1383 . doi:S0741-5214(10)01127-4 [pii] 10.1016/j.jvs.2010.04.080
  • 36 Ye W, Liu CW, Ricco JB. et al. Early and late outcomes of percutaneous treatment of TransAtlantic Inter-Society Consensus class C and D aorto-iliac lesions. J Vasc Surg 2011; 53: 1728-1737 . doi:S0741-5214(11)00298-9 [pii] 10.1016/j.jvs.2011.02.005
  • 37 Suzuki K, Mizutani Y, Soga Y. et al. Efficacy and Safety of Endovascular Therapy for Aortoiliac TASC D Lesions. Angiology 2017; 68: 67-73 . doi:0003319716638005 [pii] 10.1177/0003319716638005
  • 38 Bosiers M, Deloose K, Callaert J. et al. BRAVISSIMO: 12-month results from a large scale prospective trial. J Cardiovasc Surg (Torino) 2013; 54: 235-253 . doi:R37137462 [pii]
  • 39 Iida O, Soga Y, Takahara M. et al. Efficacy of the S.M.A.R.T. Control vs. other stents for aortoiliac occlusive disease in contemporary clinical practice. J Endovasc Ther 2013; 20: 431-439 . doi:10.1583/12-4156MR.1
  • 40 Tewksbury R, Taumoepeau L, Cartmill A. et al. Outcomes of covered expandable stents for the treatment of TASC D aorto-iliac occlusive lesions. Vascular 2015; 23: 630-636 . doi:1708538114568479 [pii] 10.1177/1708538114568479
  • 41 Bradbury AW, Adam DJ, Bell J. et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: An intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg 2010; 51: 5S-17S . doi:S0741-5214(10)00233-8 [pii] 10.1016/j.jvs.2010.01.073
  • 42 Zhang L, Bao J, Zhao Z. et al. Effectiveness of Viabahn in the Treatment of Superficial Femoral Artery Occlusive Disease: A Systematic Review and Meta-analysis. J Endovasc Ther 2015; 22: 495-505 . doi:1526602815588274 [pii] 10.1177/1526602815588274
  • 43 McQuade K, Gable D, Pearl G. et al. Four-year randomized prospective comparison of percutaneous ePTFE/nitinol self-expanding stent graft versus prosthetic femoral-popliteal bypass in the treatment of superficial femoral artery occlusive disease. J Vasc Surg 2010; 52: 584-590 ; discussion 590–581, 591 e581–591 e587. doi:S0741-5214(10)00904-3 [pii] 10.1016/j.jvs.2010.03.071
  • 44 Bosiers M, Peeters P, Tessarek J. et al. The Zilver(R) PTX(R) Single Arm Study: 12-month results from the TASC C/D lesion subgroup. J Cardiovasc Surg (Torino) 2013; 54: 115-122 . doi:R37137272 [pii]
  • 45 Treitl M, Reiser MF, Treitl KM. Stent-assisted recanalization of femoropopliteal arterial occlusive disease. Influence of stent design on patency rates. Radiologe 2016; 56: 233-239 . doi:10.1007/s00117-016-0077-10.1007/s00117-016-0077-y [pii]
  • 46 Zeller T, Baumgartner I, Scheinert D. et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol 2014; 64: 1568-1576 . doi:S0735-1097(14)05714-3 [pii] 10.1016/j.jacc.2014.06.1198
  • 47 Enezate TH, Omran J, Mahmud E. et al. Endovascular versus surgical treatment for acute limb ischemia: a systematic review and meta-analysis of clinical trials. Cardiovasc Diagn Ther 2017; 7: 264-271 . doi:10.21037/cdt.2017.03.03 cdt-07-03-264 [pii]
  • 48 Karnabatidis D, Spiliopoulos S, Tsetis D. et al. Quality improvement guidelines for percutaneous catheter-directed intra-arterial thrombolysis and mechanical thrombectomy for acute lower-limb ischemia. Cardiovasc Intervent Radiol 2011; 34: 1123-1136 . doi:10.1007/s00270-011-0258-z