Der Klinikarzt 2018; 47(09): 404-411
DOI: 10.1055/a-0697-7102
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Myelodysplastische Syndrome

Diagnostik, Klassifikation und Therapie
Corinna Strupp
Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf
,
Anna Schuck
Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf
,
Rainer Haas
Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf
› Author Affiliations
Further Information

Publication History

Publication Date:
19 September 2018 (online)

Zusammenfassung

Myelodysplastische Syndrome (MDS) sind Knochenmarkerkrankungen einer klonal entarteten hämatopoietischen Stamm- oder Progenitorzelle, die zu einer ineffektiven Hämatopoiese führen und mit einem erhöhten Risiko für einen Übergang in eine akute myeloische Leukämie einhergehen. MDS treten meist im höheren Lebensalter auf und haben einen individuell sehr unterschiedlichen Krankheitsverlauf. Mittels einer zytologischen, zytogenetischen und histologischen Untersuchung des Knochenmarks wird die Diagnose gestellt. Patienten mit Niedrigrisiko erhalten in palliativer Intention unter anderem Transfusionen mit Blutprodukten, ggf. eine Eisenchelation, Erythropoetin bei niedrigem endogenen Erythropoetin-Spiegel und Lenalidomid beim Vorliegen einer 5q- Deletion. Demgegenüber kommt für Patienten mit Hochrisiko-Konstellation in einem Alter von 65–70 Jahren ohne relevante Komorbidität eine allogene Blutstammzelltransplantation in kurativer Intention in Frage. Patienten die nicht für eine Transplantation in Frage kommen, können in palliativer Intention mit der hypomethylierenden Substanz 5-Azacitidine behandelt werden.

 
  • Literatur

  • 1 Arber DA, Orazi A, Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391-2405
  • 2 Hasserjian R, Orazi A, Brunning RD. et al. Mylodysplasia, overview, in: WHO classification of tumours of haematopoetic and lymphoid tissue. Revised 4th edition. Lyon: International Agency for Research on Cancer; 2017
  • 3 Greenberg PL, Tuechler H, Schanz J. et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012; 120: 2454-2465
  • 4 Neukirchen J, Schoonen WM, Strupp C. et al. Incidence and prevalence of myelodysplastic syndromes: Data from the Düsseldorf MDS-registry. Leuk Res 2011; 35: 1591-1596
  • 5 Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer 2012; 12: 849-859
  • 6 Kuendgen A, Mende C, Haase D. et al. Prognostic factors in treatment-related Myelodysplastic Syndromes (t-MDS) and Acute Myeloid Leukemia (t-AML). Blood 2007; 110: 2451
  • 7 Germing U, Strupp C, Giagounidis A. et al. Evaluation of dysplasia through detailed cytomorphology in 3156 patients from the Düsseldorf Registry on myelodysplastic syndromes. Leuk Res 2012; 36: 727-734
  • 8 Geyh S, Rodríguez-Paredes M, Jäger P. et al. TGFβ1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 17.05.2018 pii: haematol.2017.186734. doi: 10.3324/haematol.2017.186734
  • 9 Savic A, Cemerikic-Martinovic V, Dovat S. et al. Angiogenesis and survival in patients with myelodysplastic syndrome. Popovic S. Pathol Oncol Res 2012; 18: 681-690 doi: 10.1007/s12253–012–9495-y. Epub 2012 Jan 24
  • 10 Malcovati L, Hellström-Lindberg E, Bowen D. et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations. Blood 2013; 122: 2943-2964
  • 11 Della Porta MG, Travaglino E, Boveri E. et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia 2015; 29: 66-75
  • 12 Buesche M, Teoman H, Wilczak W. et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia 2008; 22: 313-322
  • 13 Schanz J, Tüchler H, Sole F. et al. New Comprehensive Cytogenetic Scoring System for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia After MDS Derived From an International Database M. J Clin Oncol 2012; 30: 820-829
  • 14 Bejar R, Stevenson K, Abdel-Wahab O. et al. Clinical effect of point mutations in myelodysplastic syndromes. N Eng J Med 2011; 364: 2496-2506
  • 15 Haferlach T, Nagata Y, Grossmann V. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014; 28: 241-247
  • 16 Hellström-Lindberg E, Negrin R, Stein R. et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol 1997; 99: 344-351
  • 17 Houston BL, Jayakar J, Wells RA. et al. A predictive model of response to erythropoietin stimulating agents in myelodysplastic syndrome: from the Canadian MDS patient registry. Ann Hematol 2017; 96: 2025-2029
  • 18 Nolte F, Höchsmann B, Giagounidis A. et al. Results from a 1-year, open-label, single arm, multi-center trial evaluating the efficacy and safety of oral Deferasirox in patients diagnosed with low and int-1 risk myelodysplastic syndrome (MDS) and transfusiondependent iron overload. Ann Hematol 2013; 92: 191-198
  • 19 Fenaux P, Giagounidis A, Selleslag D. et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood 2011; 118: 3765-3776
  • 20 Savic A, Cemerikic-Martinovic V, Dovat S. et al. Randomized Phase III Study of Lenalidomide Versus Placebo in RBC Transfusion-Dependent Patients With Lower-Risk Non-del(5q) Myelodysplastic Syndromes and Ineligible for or Refractory to Erythropoiesis-Stimulating Agents. J Clin Oncol 2016; 34: 2988-2996
  • 21 Fenaux P, Mufti GJ, Hellstrom-Lindberg E. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223-232
  • 22 Schuck A, Goette M, Haas R. et al. A retrospective study evaluating the impact of infectious complications during azacitidine treatment. Ann Hematol 2017; 96: 1097-1104
  • 23 Lübbert M, Suciu S, Baila L. et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of theEuropean Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol 2011; 29: 1987-1996
  • 24 Kuendgen A, Müller-Thomas C, Lauseker M. et al. Efficacy of azacitidine is independent of molecular and clinical characteristics – an analysis of 128 patients with myelodysplastic syndromes or acute myeloid leukemia and a review of the literature. Oncotarget 2018; 9: 27882-27894
  • 25 Schuler E, Zadrozny N, Blum S. et al. Long-term outcome of high risk patients with myelodysplastic syndromes or secondary acute myeloid leukemia receiving intensive chemotherapy. Ann Hematol. 04.08.2018 doi: 10.1007/s00277–018–3466–7
  • 26 Knipp S, Hildebrand B, Kuendgen A. et al. Intensive chemotherapy is not recommended for patients aged >60 years who have myelodysplastic syndromes or acute myeloid leukemia with high-risk karyotypes. Cancer 2007; 110: 345-352
  • 27 Kobbe G, Schroeder T, Haas R. et al. The current and future role of stem cells in myelodysplastic syndrome therapies. Expert Rev Hematol 2018; 11: 411-422
  • 28 Neukirchen J, Lauseker M, Hildebrandt B. et al. Cytogenetic clonal evolution in myelodysplastic syndromes is associated with inferior prognosis. Cancer 2017; 123: 4608-4616
  • 29 Platzbecker U, Germing U, Götze KS. et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol 2017; 18: 1338-1347