Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2018; 25(05): 205-212
DOI: 10.1055/a-0748-7956
Raumfahrtmedizin
Georg Thieme Verlag KG Stuttgart · New York

Strahlenrisiko auf Langzeitraumflügen

Radiation risk during long-term space missions
Christine E. Hellweg
1   Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Köln
,
Thomas Berger
1   Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Köln
,
Christa Baumstark-Khan
1   Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Köln
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. Oktober 2018 (online)

Zusammenfassung

Der alte Menschheitstraum, nach den Sternen zu greifen und den Fuß auf unbewohnte Planeten zu setzen, rückt für den heutigen Menschen in unmittelbare Nähe. Die technisch mögliche Reise zu Mond oder Mars kann für den „Homo spatialis“ mit Sonnenstürmen und Partikelbeschuss gepflastert sein und birgt medizinische Risiken: Vor allem die erhöhte Strahlendosis der solaren und galaktischen Komponenten der Weltraumstrahlung (Elektronen, Protonen und hochenergetische schwere Teilchen) kann zu einem bedrohlichen Gesundheitsrisiko werden. Je nach Missionsdesign besteht die Möglichkeit, durch unvorhersehbare Sonnenstürme akute Strahlenschäden zu erleiden und, bedingt durch die erhöhte biologische Wirksamkeit der galaktischen Strahlung, Langzeitschäden zu entwickeln. Abschätzungen zeigen, dass Astronauten während einer Marsreise mit einer Strahlenbelastung zu rechnen haben, die weit über dem amtlichen Grenzwert von jährlich 20 mSv für beruflich strahlenexponierte Personen in Europa liegt. Die Karrieredosis von Astronauten kann möglicherweise zu einem 3–4 % erhöhten zusätzlichen Krebsrisiko führen. Des Weiteren ist mit einem früheren und häufigeren Auftreten von Katarakten zu rechnen. Das Risiko für neurodegenerative Effekte ist zurzeit schwer einschätzbar. Gegenmaßnahmen umfassen Abschirmung, Warnsysteme für Sonnenstürme und unter Umständen auch diätetische und pharmakologische Mittel.

Abstract

The old human dream of reaching for the stars and setting foot on uninhabited planets is in the immediate vicinity of today’s humans. The technically possible journey to the Moon or Mars can be paved for the „Homo spatialis“ with solar storms and particle bombardment and poses medical risks: above all the increased radiation dose of the solar or galactic components of space radiation (electrons, protons and high-energy heavy particles) can become a threatening health risk. Depending on the mission design, there is the possibility of experiencing acute radiation damage due to unpredictable solar storms and, due to the increased biological effectiveness of galactic cosmic radiation, of developing long-term damage. Estimates show that astronauts have to expect a radiation exposure during a trip to Mars, which is far above the official limit of 20 mSv annually for occupationally exposed persons in Europe. The career dose of astronauts may potentially lead to a 3–4 % increased risk of cancer. Furthermore, an earlier and more frequent occurrence of cataracts can be expected. The risk of neurodegenerative effects is currently difficult to assess. Countermeasures include shielding, solar storm warning systems, and possibly dietary and pharmacological agents.

 
  • Literatur

  • 1 National Aeronautics and Space Administration. Mars Science Laboratory. Im Internet: http://mars.nasa.gov/msl
  • 2 Zeitlin C, Hassler DM, Cucinotta FA. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.. Science 2013; 340: 1080-1084
  • 3 Carnell L, Blattnig S, Hu S. et al. Evidence Report: Risk of acute radiation syndromes due to solar particle events.. In: Lyndon B. Johnson Space Center Human Research Program.; Houston: 2016
  • 4 NOAA Space Environment Services Center. Solar Proton Events Affecting the Earth Environment. Im Internet http://umbra.nascom.nasa.gov/SEP/
  • 5 Sunspot Index and Longterm Solar Observations. Sunspot Number. Im Internet: http://sidc.oma.be/sunspot-data/
  • 6 Reitz G. Characteristic of the radiation field in low Earth orbit and in deep space.. Z Med Phys 2008; 18: 233-243
  • 7 Nelson GA. Space Radiation and Human Exposures. A Primer. Radiat Res 2016; 185: 349-358
  • 8 Fraser-Smith AC. Centered and eccentric geomagnetic dipoles and their poles 1600–1985.. Reviews of Geophysics 1987; 25: 1-16
  • 9 Berger T, Burmeister S, Matthiä D. et al. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016.. J Space Weather Space Clim 2017; 7: A8
  • 10 Reitz G, Berger T, Bilski P. et al. Astronaut’s organ doses inferred from measurements in a human phantom outside the international space station.. Radiat Res 2009; 171: 225-235
  • 11 Straube U, Berger T, Reitz G. et al. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations.. Acta Astronaut 2010; 66: 963-973
  • 12 Berger T, Przybyla B, Matthiä D. et al. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS).. J Space Weather Space Clim 2016; 6: A39
  • 13 Berger T, Bilski P, Hajek M. et al. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.. Radiat Res 2013; 180: 622-637
  • 14 Williams R.. NASA Space Flight Human-System Standard Volume 1, Revision A: Crew Health.. In: National Aeronautics and Space Administration. NASA Technical Standards.. Washington, D.C.: 2015
  • 15 Jandial R, Hoshide R, Waters JD. et al. Space-brain: The negative effects of space exposure on the central nervous system.. Surg Neurol Int 2018; 9: 9
  • 16 Shukitt-Hale B, Casadesus G, Cantuti-Castelvetri I. et al. Cognitive deficits induced by 56Fe radiation exposure.. Adv Space Res 2003; 31: 119-126
  • 17 Parihar VK, Allen BD, Caressi C. et al. Cosmic radiation exposure and persistent cognitive dysfunction.. Sci Rep 2016; 6: 34774
  • 18 Parihar VK, Maroso M, Syage A. et al. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice.. Exp Neurol 2018; 305: 44-55
  • 19 Acharya MM, Baddour AA, Kawashita T. et al. Epigenetic determinants of space radiation-induced cognitive dysfunction.. Sci Rep 2017; 7: 42885
  • 20 Shimizu Y, Kodama K, Nishi N. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003.. BMJ 2010; 340: b5349
  • 21 Little MP. Radiation and circulatory disease.. Mutat Res 2016; 770 Pt B 299-318
  • 22 Little MP, Azizova TV, Bazyka D. et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks.. Environ Health Perspect 2012; 120: 1503-1511
  • 23 Delp MD, Charvat JM, Limoli CL. et al. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium.. Sci Rep 2016; 6: 29901
  • 24 Cucinotta FA, Hamada N, Little MP. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures.. Life Sci Space Res (Amst) 2016; 10: 53-56
  • 25 Preston DL, Shimizu Y, Pierce DA. et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997.. Radiat Res 2003; 160: 381-407
  • 26 Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors.. Radiat Res 2000; 154: 178-186
  • 27 Cucinotta FA. A new approach to reduce uncertainties in space radiation cancer risk predictions.. PLoS One 2015; 10: e0120717
  • 28 Cucinotta FA. Biophysics of NASA radiation quality factors.. Radiat Prot Dosimetry 2015; 166 (01) (04) 282-289
  • 29 Cucinotta FA, Schimmerling W, Wilson JW. et al. Space radiation cancer risks and uncertainties for Mars missions.. Radiat Res 2001; 156 5 Pt 2 682-688
  • 30 Cucinotta FA. Space radiation risks for astronauts on multiple International Space Station missions.. PLoS One 2014; 9: e96099
  • 31 Cucinotta FA, Manuel FK, Jones J. et al. Space radiation and cataracts in astronauts.. Radiat Res 2001; 156 5 Pt 1 460-466
  • 32 Hamada N, Sato T. Cataractogenesis following high-LET radiation exposure.. Mutat Res 2016; 770 Pt B 262-291
  • 33 Rabin BM, Shukitt-Hale B, Joseph J. et al. Diet as a factor in behavioral radiation protection following exposure to heavy particles.. Gravit Space Biol Bull 2005; 18: 71-77
  • 34 Schreurs AS, Shirazi-Fard Y, Shahnazari M. et al. Dried plum diet protects from bone loss caused by ionizing radiation.. Sci Rep 2016; 6: 21343
  • 35 Romero-Weaver AL, Ni J, Lin L. et al. Orally Administered Fructose Increases the Numbers of Peripheral Lymphocytes Reduced by Exposure of Mice to Gamma or SPE-like Proton Radiation.. Life Sci Space Res (Amst) 2014; 2: 80-85
  • 36 Burdelya LG, Gleiberman AS, Toshkov I. et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy.. Int J Radiat Oncol Biol Phys 2012; 83: 228-234
  • 37 Toshkov IA, Gleiberman AS, Mett VL. et al. Mitigation of Radiation-Induced Epithelial Damage by the TLR5 Agonist Entolimod in a Mouse Model of Fractionated Head and Neck Irradiation.. Radiat Res 2017; 187: 570-580