Pneumologie 2018; 72(12): 820-831
DOI: 10.1055/a-0749-5520
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Aerosolcharakteristika ausgewählter Druckluftvernebler für Erwachsene in Simulationsmodellen und Verneblung von Salbutamol[*]

Drug Output and Aerosol Characteristics of Different Jet Nebulisers for Adults While Simulating the Nebulisation of Salbutamol
H. Walz-Jung
1   Apotheke der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz
,
I. Krämer
1   Apotheke der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz
,
W. Kamin
2   Klinik für Kinder und Jugendmedizin am EVK Hamm, Hamm
› Author Affiliations
Further Information

Publication History

eingereicht14 August 2018

akzeptiert nach Revision23 September 2018

Publication Date:
19 November 2018 (online)

Zusammenfassung

Ziel Der Erfolg einer Inhalationstherapie wird durch Menge und Qualität des inhalierten Aerosols bestimmt. Die Auswahl eines Verneblers bedarf der Kenntnis der entsprechenden Aerosolcharakteristika.

Methoden Die Aerosolperformance von 9 marktüblichen Druckluftverneblern wurde in vitro in 2 Simulationsmodellen geprüft. Salbutamol (Sultanol forte® Fertiginhalat 2,5 mg/2,5 ml; GSK) wurde über 4 Minuten vernebelt. Die Outputparameter wurden mit dem Atemzugsimulator PARI Compas II (Erwachsenenmanöver nach Ph.Eur.9.0; n = 5/6 Verneblungen) und die aerodynamische Partikelgrößenverteilung mit dem Next Generation Impaktor (Ph.Eur.9.0, Copley Scientific; n = 3 Verneblungen) per HPLC bestimmt.

Ergebnisse Die Vernebler generierten deutlich unterschiedliche Abgaberaten und Aerosolspektren. Die Drug Delivery Rate (DDR) variierte zwischen 196 µg/min (PARI LC Sprint (blau)) und 67 µg/min (MIDINEB). Die aus DDR und Feinpartikelanteil ≤ 5 µm berechnete intrapulmonal deponierte Aerosolmenge (Respirable Drug Delivery Rate, RDDR) variierte um den Faktor 3,5.

Schlussfolgerungen Die Ergebnisse der In-vitro-Untersuchungen können unterstützend zur Auswahl eines geeigneten Druckluftverneblers genutzt werden. Für eine effektive Therapie und gute Compliance sollte ein Vernebler mit einer hohen RDDR gewählt werden.

Abstract

Aim Successful inhalation therapy with nebulisers depends on the amount and quality of the aerosol. Choosing a nebuliser requires knowledge of relevant aerosol characteristics.

Methods We analysed the aerosol performance of 9 commercially available jet nebulisers in 2 in vitro simulation models by assessing the aerosol delivery of albuterol (Sultanol forte® Inhalation Solution 2.5 mg/2.5 ml; GSK) over 4 minutes. The output parameters were analysed with PARI Compas II breath simulator mimicking an adult breathing pattern (Ph.Eur.9.0; n = 5/6 nebulisation), and the aerodynamic particle size distribution was determined by the Next Generation Impactor (Ph.Eur.9.0, Copley Scientific; n = 3 nebulisation).

Results The aerosol performance of the devices differed considerably. The DDR varied from 196 µg/min (PARI LC Sprint (blue)) to 67 µg/min (MIDINEB). The Respirable Drug Delivery Rate (RDDR), calculated from the DDR and the Fine Particle Fraction ≤ 5 µm, varied by a factor of 3.5 between the nebulisers tested.

Conclusion The results of the in vitro simulation studies can be utilised to select an appropriate nebuliser for the individual patient. In order to enhance therapeutic efficacy and patient compliance, a nebuliser with a high RDDR should be selected.

* Hinweis: Zum Zeitpunkt der Manuskriptveröffentlichung sind die getesteten Verneblermodelle von MPV Medical und Philips Respironics nicht mehr auf dem deutschen Markt verfügbar.


 
  • Literatur

  • 1 Buhl R, Bals R, Baur X. et al. [Guideline for the Diagnosis and Treatment of Asthma - Guideline of the German Respiratory Society and the German Atemwegsliga in Cooperation with the Paediatric Respiratory Society and the Austrian Society of Pneumology]. Pneumologie 2017; 71: 849-919
  • 2 Vogelmeier C, Buhl R, Burghuber O. et al. [Guideline for the Diagnosis and Treatment of COPD Patients - Issued by the German Respiratory Society and the German Atemwegsliga in Cooperation with the Austrian Society of Pneumology]. Pneumologie (Stuttgart, Germany) 2018; 72: 253-308
  • 3 Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. 2017 Available from: http://www.ginasthma.org/ [Accessed 2017 Juni]
  • 4 Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of COPD. 2017 Available from: http://www.goldcopd.org/ [Accessed 2017 Juni]
  • 5 Pritchard JN. The influence of lung deposition on clinical response. J Aerosol Med 2001; 14 (Suppl. 01) S19-S26
  • 6 Melani AS, Canessa P, Coloretti I. et al. Inhaler mishandling is very common in patients with chronic airflow obstruction and long-term home nebuliser use. Respir Med 2012; 106: 668-676
  • 7 Laube BL, Janssens HM, de Jongh FH. et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J 2011; 37: 1308-1331
  • 8 Kamin W. Neue Aspekte zur effektiven bronchialen Applikation inhalativer Medikamente im Kindesalter. Kumulative Habilitation. Johannes Gutenberg-Universität Mainz; 2007
  • 9 Wollstadt A. Optimierung der inhalativen Therapie bei Patienten mit Cystischer Fibrose und bei Kleinkindern. Johannes Gutenberg Universität Mainz.
  • 10 Walz-Jung H. Optimierung der Inhalationstherapie: Untersuchungen zu Aerosolcharakteristika von ausgewählten Druckluftverneblern, zur Stabilität von Mischinhalationslösungen sowie zum computergestützten Inhalationstraining von potentiellen Trainern. Johannes Gutenberg Universität Mainz; 2017
  • 11 DIN EN 13544-1:2007+A1:2009 “Respiratory therapy equipment – Part 1: Nebulizing systems and their components”. 2009
  • 12 Boe J, Dennis JH, O'Driscoll BR. et al. European Respiratory Society Guidelines on the use of nebulizers. Guidelines prepared by a European Respiratory Society Task Force on the use of nebulizers 2001; 18: 228-242
  • 13 European Pharmacopeia. Pharmacopeia. E. Monograph 2.9.44. Zubereitungen zur Verneblung: Charakterisierung. Stuttgart: Deutscher Apotheker Verlag; 2017
  • 14 Bauer A, McGlynn P, Bovet LL. et al. The influence of breathing pattern during nebulization on the delivery of arformoterol using a breath simulator. Respir Care 2009; 54: 1488-1492
  • 15 European Pharmacopeia. Pharmacopeia. E. Monograph 2.9.18. Zubereitungen zur Inhalation: Aerodynamische Beurteilung feiner Teilchen. Stuttgart: Deutscher Apotheker Verlag; 2017
  • 16 Bitterle E, Luithlen A, Reul K. et al. Recommendation to use a climate box for optimisation of cascade impaction measurements ensuring exact control of humidity and impactor temperature. Aerosol Society Meeting Drug Delivery to the Lungs 19th. Edinburgh, United Kingdom: 2008
  • 17 Barry PW, OʼCallaghan C. Drug output from nebulizers is dependent on the method of measurement. Eur Respir J 1998; 12: 463-466
  • 18 Nikander K, Denyer J, Smaldone GC. Effects of equipment dead space and pediatric breathing patterns on inhaled mass of nebulized budesonide. J Aerosol Med 1999; 12: 67-73
  • 19 OʼCallaghan C, White J, Jackson J. et al. Delivery of nebulized budesonide is affected by nebulizer type and breathing pattern. J Pharm Pharmacol 2005; 57: 787-790
  • 20 Roth AP, Lange CF, Finlay WH. The effect of breathing pattern on nebulizer drug delivery. J Aerosol Med 2003; 16: 325-339
  • 21 Vecellio L, Kippax P, Rouquette S. et al. Influence of realistic airflow rate on aerosol generation by nebulizers. Int J Pharm 2009; 371: 99-105
  • 22 Schüepp KG, Jauernig J, Janssens HM. et al. In vitro determination of the optimal particle size for nebulized aerosol delivery to infants. Journal of aerosol medicine 2005; 18: 225-235
  • 23 Jauernig J, Mitchell J, Berg E. et al. Position paper: recommendation on the adoption of breathing patterns for infants and small children in general chapter 2.9.44. Preparations for nebulisation. Pharmeur Sci Notes 2008; 2008: 31-32
  • 24 Hess DR. Liquid nebulization: emerging technologies conference summary. Respir Care 2002; 47: 1471-1476
  • 25 Bosco AP, Rhem RG, Dolovich MB. In vitro estimations of in vivo jet nebulizer efficiency using actual and simulated tidal breathing patterns. J Aerosol Med 2005; 18: 427-438
  • 26 Mitchell J, Newman S, Chan HK. In vitro and in vivo aspects of cascade impactor tests and inhaler performance: a review. AAPS PharmSciTech 2007; 8: E110
  • 27 Ari A, Atalay OT, Harwood R. et al. Influence of nebulizer type, position, and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respiratory care 2010; 55: 845-851
  • 28 Ari A, de Andrade AD, Sheard M. et al. Performance comparisons of jet and mesh nebulizers using different interfaces in simulated spontaneously breathing adults and children. Journal of aerosol medicine and pulmonary drug delivery 2015; 28: 281-289
  • 29 Ari A, Harwood RJ, Sheard MM. et al. Pressurized metered-dose inhalers versus nebulizers in the treatment of mechanically ventilated subjects with artificial airways: an in vitro study. Respiratory care 2015; 60: 1570-1574
  • 30 Baravalle-Einaudi M, Dufeu N, Dupont C. et al. Vibrating-mesh nebulizer maintenance by CF patients: Results from a French survey. Pulm Pharmacol Ther 2017; 44: 57-60
  • 31 Barry PW, O'Callaghan C. An in vitro analysis of the output of salbutamol from different nebulizers. Eur Respir J 1999; 13: 1164-1169
  • 32 Bauer A, McGlynn P, Bovet LL. et al. Output and aerosol properties of 5 nebulizer/compressor systems with arformoterol inhalation solution. Respir Care 2009; 54: 1342-1347
  • 33 ElHansy MH, Boules ME, El Essawy AFM. et al. Inhaled salbutamol dose delivered by jet nebulizer, vibrating mesh nebulizer and metered dose inhaler with spacer during invasive mechanical ventilation. Pulmonary pharmacology & therapeutics 2017; 45: 159-163
  • 34 ElHansy MH, Boules ME, Farid H. et al. In vitro aerodynamic characteristics of aerosol delivered from different inhalation methods in mechanical ventilation. Pharmaceutical development and technology 2017; 22: 844-849
  • 35 Michotte JB, Jossen E, Roeseler J. et al. In vitro comparison of five nebulizers during noninvasive ventilation: analysis of inhaled and lost doses. J Aerosol Med Pulm Drug Deliv 2014; 27: 430-440
  • 36 Rau JL, Ari A, Restrepo RD. Performance comparison of nebulizer designs: constant-output, breath-enhanced, and dosimetric. Respir Care 2004; 49: 174-179
  • 37 Sagalla RB, Smaldone GC. Capturing the efficiency of vibrating mesh nebulizers: minimizing upper airway deposition. J Aerosol Med Pulm Drug Deliv 2014; 27: 341-348
  • 38 Smith EC, Denyer J, Kendrick AH. Comparison of twenty three nebulizer/compressor combinations for domiciliary use. Eur Respir J 1995; 8: 1214-1221
  • 39 Vecellio L, Abdelrahim ME, Montharu J. et al. Disposable versus reusable jet nebulizers for cystic fibrosis treatment with tobramycin. J Cyst Fibros 2011; 10: 86-92
  • 40 Tiemersma S, Minocchieri S, van Lingen RA. et al. Vibrating membrane devices deliver aerosols more efficient than standard devices: a study in a neonatal upper airway model. J Aerosol Med Pulm Drug Deliv 2013; 26: 280-286
  • 41 Knipel V, Criee CP, Windisch W. [Correct inhalation therapy: instructions provided by Internet-based video screens. An initiative of the German Airway League]. Pneumologie 2013; 67: 157-161