Dialyse aktuell 2018; 22(09): 404-409
DOI: 10.1055/a-0765-9503
Schwerpunkt | Dialyse
© Georg Thieme Verlag KG Stuttgart · New York

Biokompatible Peritonealdialyselösungen

Alte und neue Konzepte
Andreas Vychytil
Abteilung für Nephrologie und Dialyse, Klinik für Innere Medizin III, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2018 (online)

Zusammenfassung

Durch langzeitige intraperitoneale Anwendung von Glukoselösungen treten bei PD-Patienten (PD: Peritonealdialyse) morphologische und funktionelle Schäden an der Peritonealmembran auf. Es gibt keine eindeutige Evidenz, dass PD-Lösungen mit alternativen osmotischen Substanzen (Icodextrin, Aminosäuren) langfristig einen günstigen Einfluss auf peritonealeSchäden bei chronischen PD-Patienten haben. Dennoch ist die klinische Bedeutung von icodextrinhaltigen PD-Lösungen zur Optimierung des Salz- und Wasserhaushaltes uneingeschränkt. In rezenten Metaanalysen haben Low-GDP-Lösungen (GDP: Glukosedegradationsprodukte) harte Endpunkte wie Peritonitis und technisches Versagen nicht signifikant beeinflusst. Dennoch weisen einzelne kleinere Studien und Kohortenstudien darauf hin, dass diese Lösungen morphologische Schäden der Peritonealmembran reduzieren. Alanyl-Glutamin als Zusatz zur PD-Lösung hat in ersten klinischen Studien zu membranprotektiven, immunmodulatorischen und antiinflammatorischen Effekten geführt. Klinische Studien mit längerer Beobachtungszeit müssen zeigen, ob dies auch mit einer verbesserten Peritonitisrate, einem verbesserten technischen Überleben und/oder Überleben von PD-Patienten assoziiert ist.

 
  • Literatur

  • 1 Williams JD, Craig KJ, Topley N. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470-479
  • 2 Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity: impact of more biocompatible solutions. Nephrol Dial Transplant 2002; 17 (Suppl. 03) 12-15
  • 3 Krediet RT, Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol 2013; 9: 419-429 doi:10.1038/nrneph.2013.99
  • 4 Davies SJ, Phillips L, Naish PF. et al. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12: 1046-1051
  • 5 Wieslander A, Linden T, Kjellstrand P. Glucose degradation products in peritoneal dialysis fluids: how they can be avoided. Perit Dial Int 2001; 21 (Suppl. 03) S119-124
  • 6 Maurer O, Saxenhofer H, Jaeger P. et al. Six-month overnight administration of intraperitoneal amino acids does not improve lean mass. Clin Nephrol 1996; 45: 303-309
  • 7 Jones M, Hagen T, Boyle CA. et al. Treatment of malnutrition with 1.1 % amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis 1998; 32: 761-769
  • 8 Li FK, Chan LY, Woo JC. et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 2003; 42: 173-183
  • 9 Lin A, Qian J, Li X. et al. Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin J Am Soc Nephrol 2009; 4: 1799-1804 doi:10.2215/CJN.02950509
  • 10 Erixon M, Wieslander A, Linden T. et al. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 2006; 26: 490-497
  • 11 Gotloib L, Wajsbrot V, Shostak A. Osmotic agents hamper mesothelial repopulation as seen in the doughnut in vivo model. Perit Dial Int 2005; 25 (Suppl. 03) S26-30
  • 12 Bender TO, Witowski J, Ksiazek K. et al. Comparison of icodextrin- and glucose-based peritoneal dialysis fluids in their acute and chronic effects on human peritoneal mesothelial cells. Int J Artif Organs 2007; 30: 1075-1082
  • 13 Davies SJ, Brown EA, Frandsen NE. et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67: 1609-1615 doi:10.1111/j.1523–1755.2005.00243.x
  • 14 Vychytil A, Remon C, Michel C. et al. Icodextrin does not impact infectious and culture-negative peritonitis rates in peritoneal dialysis patients: a 2-year multicentre, comparative, prospective cohort study. Nephrol Dial Transplant 2008; 23: 3711-3719 doi:10.1093/ndt/gfn322
  • 15 Korte MR, Sampimon DE, Lingsma HF. et al. Risk factors associated with encapsulating peritoneal sclerosis in Dutch EPS study. Perit Dial Int 2011; 31: 269-278 doi:10.3747/pdi.2010.00167
  • 16 Habib AM, Preston E, Davenport A. Risk factors for developing encapsulating peritoneal sclerosis in the icodextrin era of peritoneal dialysis prescription. Nephrol Dial Transplant 2010 25: 1633-1638 doi:10.1093/ndt/gfp677
  • 17 Zareie M, van Lambalgen AA, ter Wee PM. et al. Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 2005; 25: 58-67
  • 18 Martikainen T, Teppo AM, Gronhagen-Riska C. et al. Benefit of glucose-free dialysis solutions on glucose and lipid metabolism in peritoneal dialysis patients. Blood Purif 2005; 23: 303-310 doi:10.1159/000086553
  • 19 Vychytil A. Peritonealdialyse gestern und heute: welche Entwicklungen und Erkenntnisse waren in den letzten Jahrzehnten bedeutend? [Peritoneal dialysis from the beginnings up to today: which developments of the last decades were important?]. Wien Med Wochenschr 2013; 163: 255-265 doi:10.1007/s10354–013–0191–7
  • 20 MacKenzie RK, Holmes CJ, Moseley A. et al. Bicarbonate/lactate- and bicarbonate-buffered peritoneal dialysis fluids improve ex vivo peritoneal macrophage TNFalpha secretion. J Am Soc Nephrol 1998; 9: 1499-1506
  • 21 Bajo MA, Perez-Lozano ML, Albar-Vizcaino P. et al. Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol Dial Transplant 2011; 26: 282-291 doi:10.1093/ndt/gfq357
  • 22 Cho Y, Johnson DW, Badve SV. et al. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int 2013; 84: 969-979 doi:10.1038/ki.2013.190
  • 23 Lopes Barreto D, Krediet RT. Current status and practical use of effluent biomarkers in peritoneal dialysis patients. Am J Kidney Dis 2013; 62: 823-833 doi:10.1053/j.ajkd.2013.01.031
  • 24 Srivastava S, Hildebrand S, Fan SL. Long-term follow-up of patients randomized to biocompatible or conventional peritoneal dialysis solutions show no difference in peritonitis or technique survival. Kidney Int 2011; 80: 986-991 doi:10.1038/ki.2011.244
  • 25 Johnson DW, Brown FG, Clarke M. et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 2012; 23: 1097-1107 doi:10.1681/ASN.2011121201
  • 26 Combet S, Miyata T, Moulin P. et al. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 2000; 11: 717-728
  • 27 Mortier S, De Vriese AS, Van de Voorde J. et al. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol 2002; 13: 480-489
  • 28 Johnson DW, Brown FG, Clarke M. et al. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant 2012; 27: 4445-4453 doi:10.1093/ndt/gfs314
  • 29 Cho Y, Johnson DW, Craig JC. et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 2014; 27: CD007554 doi: 10.1002/14651858.CD007554.pub2
  • 30 Kawanishi K, Honda K, Tsukada M. et al. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int 2013; 33: 242-251 doi:10.3747/pdi.2011.00270
  • 31 Hamada C, Honda K, Kawanishi K. et al. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs 2015; 18: 243-250 doi: 10.1007/s10047–015–0822–4
  • 32 del Peso G, Jimenez-Heffernan JA, Selgas R. et al. Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. A Case-Control Study on human biopsies. Perit Dial Int 2016; 36: 129-134 doi: 10.3747/pdi.2014.00038
  • 33 Nakayama M, Miyazaki M, Honda K. et al. Encapsulating peritoneal sclerosis in the era of a multi-disciplinary approach based on biocompatible solutions: the NEXT-PD study. Perit Dial Int 2014; 34: 766-774 doi:10.3747/pdi.2013.00074
  • 34 Dombros N, Dratwa M, Feriani M. et al. European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutions. Nephrol Dial Transplant 2005; 20 (Suppl. 09) ix16-ix20 doi:10.1093/ndt/gfi1119
  • 35 Wernerman J. Clinical use of glutamine supplementation. J Nutr 2008; 138: 2040S-2044S doi:10.1093/jn/138.10.2040S
  • 36 Tao KM, Li XQ, Yang LQ. et al. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev 2014; 9: CD010050 doi: 10.1002/14651858.CD010050.pub2
  • 37 Bender TO, Böhm M, Kratochwill K. et al. Peritoneal dialysis fluids can alter HSP expression in human peritoneal mesothelial cells. Nephrol Dial Transplant 2011; 26: 1046-1052 doi:10.1093/ndt/gfq484
  • 38 Kratochwill K, Boehm M, Herzog R. et al. Alanyl-Glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol Dial Transplant. 2012; 27: 937-946 doi:10.1093/ndt/gfr459
  • 39 Bender TO, Böhm M, Kratochwill K. et al. HSP-mediated cytoprotection of mesothelial cells in experimental acute peritoneal dialysis. Perit Dial Int 2010; 30: 294-299 doi:10.3747/pdi.2009.00024
  • 40 Ferrantelli E, Liappas G, Vila Cuenca M. et al. The dipeptide Alanyl-Glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int 2016; 89: 625-635 doi:10.1016/j.kint.2015.12.005
  • 41 Kratochwill K, Boehm M, Herzog R. et al. Addition of Alanyl-Glutamine to dialysis fluid restores peritoneal cellular stress responses – A First-In-Man Trial. PLoS One 2016; 11: e0165045 doi:10.1371/journal.pone.0165045
  • 42 Herzog R, Boehm M, Unterwurzacher M. et al. Effects of Alanyl-Glutamine treatment on the peritoneal dialysis effluent proteome reveal pathomechanism-associated molecular signatures. Mol Cell Proteomics 2018; 17: 516-532 doi:10.1074/mcp.RA117.000186
  • 43 Vychytil A, Herzog R, Probst P. et al. A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int. 2018 im Druck, Epub erscheint vor Print. doi:10.1016/j.kint.2018.08.031
  • 44 Ploder M, Pelinka L, Schmuckenschlager C. et al. Lipopolysaccharide-induced tumor necrosis factor alpha production and not monocyte human leukocyte antigen-DR expression is correlated with survival in septic trauma patients. Shock 2006; 25: 129-134 doi:10.1097/01.shk.0000191379.62897.1d