Sportphysio, Inhaltsverzeichnis Sportphysio 2019; 07(01): 8-15DOI: 10.1055/a-0818-3165 Focus Einführung © Georg Thieme Verlag KG Stuttgart · New YorkNeuronale Kontrolle des Gleichgewichts Martin Keller , Wolfgang TaubeArtikel empfehlen Abstract Artikel einzeln kaufen Zusammenfassung In den letzten Jahren konnten Forscher nachweisen, dass es beim Gleichgewichtstraining auf spinaler und supraspinaler Ebene zu Anpassungen kommt. Diese lasse sich gezielt beeinflussen. Volltext Referenzen Literatur 1 Pollock AS, Durward BR, Rowe PJ. et al. What is balance?. Clinical Rehabilitation 2000; 14: 402-406 doi:10.1191/0269215500cr342oa 2 Riach CL, Hayes KC. Maturation of postural sway in young children. Developmental Medicine and Child Neurology 1987; 29: 650-658 3 Peterson ML, Christou E, Rosengren KS. Children achieve adult-like sensory integration during stance at 12-years-old. Gait & Posture 2006; 23: 455-463 doi:10.1016/j.gaitpost.2005.05.003 4 Papegaaij S, Taube W, Baudry S. et al. Aging causes a reorganization of cortical and spinal control of posture. Frontiers in Aging Neuroscience 2014; 6: 28 doi:10.3389/fnagi.2014.00028 5 Gollhofer A, Rapp W. Recovery of stretch reflex responses following mechanical stimulation. European Journal of Applied Physiology and Occupational Physiology 1993; 66: 415-420 6 Trimble MH, Koceja DM. Effect of a reduced base of support in standing and balance training on the soleus H-reflex. The International Journal of Neuroscience 2001; 106: 1-20 7 Katz R, Meunier S, Pierrot-Deseilligny E. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain: A Journal of Neurology 1988; 111 (Pt 2) 417-437 8 Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiologica (Oxford, England) 2008; 193: 101-116 doi:10.1111/j.1748–1716.2008.01850.x 9 Ouchi Y, Okada H, Yoshikawa E. et al. Brain activation during maintenance of standing postures in humans. Brain: A Journal of Neurology 1999; 122: 329-338 doi:10.1093/brain/122.2.329 10 Magnus R. Körperstellung. Heidelberg: Springer; 1924 11 Luccarini P, Gahery Y, Pompeiano O. Injection of a cholinergic agonist in the dorsolateral pontine tegmentum of cats affects the posturokinetic responses to cortical stimulation. Neuroscience Letters 1990; 114: 75-81 12 Stoykov ME, Stojakovich M, Stevens JA. Beneficial effects of postural intervention on prehensile action for an individual with ataxia resulting from brainstem stroke. NeuroRehabilitation 2005; 20: 85-89 13 Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Movement Disorders: official journal of the Movement Disorder Society 1992; 7: 95-109 doi:10.1002/mds.870070202 14 Ilg W, Giese MA, Gizewski ER. et al. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain: A Journal of Neurology 2008; 131: 2913-27 doi:10.1093/brain/awn246 15 Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Current Opinion in Neurobiology 2006; 16: 645-649 doi:10.1016/j.conb.2006.08.016 16 Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology 1994; 72: 479-493 17 Ashburn A, Stack E, Pickering RM. et al. A community-dwelling sample of people with Parkinson’s disease: Characteristics of fallers and non-fallers. Age and Ageing 2001; 30: 47-52 18 Carpenter MG, Allum JH, Honegger F. et al. Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry 2004; 75: 1245-1254 doi:10.1136/jnnp.2003.021147 19 Goble DJ. et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. The Journal of Neuroscience: the official journal of the Society for Neuroscience 2011; 31: 16344-52 doi:10.1523/jneurosci.4159–11.2011 20 Masakado Y. et al. EEG-EMG coherence changes in postural tasks. Electromyography and Clinical Neurophysiology 2008; 48: 27-33 21 Jacobs JV, Horak FB. Cortical control of postural responses. Journal of Neural Transmission (Vienna, Austria) 1996; 114: 1339-48 doi:10.1007/s00702–007–0657–0 22 Tokuno CD, Taube W, Cresswell AG. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiologica (Oxford, England) 2009; 195: 385-395 23 Tokuno CD, Keller M, Carpenter MG. et al. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty. Journal of Neurophysiology. 2018 doi:10.1152/jn.00709.2017 24 Taube W, Schubert M, Gruber M. et al. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Journal of Applied Physiology 2006; 101: 420-429 doi:10.1152/japplphysiol.01447.2005 25 Keller M, Pfusterschmied J, Buchecker M. et al. Improved postural control after slackline training is accompanied by reduced H-reflexes. Scandinavian Jornal of Medicine & Science in Sports 2012; 22: 471-477 doi:10.1111/j.1600–0838.2010.01268.x 26 Taube W. et al. Cortical and spinal adaptations induced by balance training: Correlation between stance stability and corticospinal activation. Acta Physiologica (Oxford, England) 2007; 189: 347-358 doi:10.1111/j.1365–201X.2007.01665.x 27 Puttemans V, Wenderoth N, Swinnen SP. Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: From the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience: the official Journal of the Society for Neuroscience 2005; 25: 4270-78 doi:10.1523/jneurosci.3866–04.2005 28 Taubert M. et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience: the official Journal of the Society for Neuroscience 2010; 30: 11670-77 doi:10.1523/jneurosci.2567–10.2010 29 Freyler K, Weltin E, Gollhofer A. et al. Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait & Posture 2014; 40: 291-296 doi:10.1016/j.gaitpost.2014.04.186 30 Marusic U. et al. Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty. Neural Plasticity 2018; 5651391 doi:10.1155/2018/5651391 31 Taube W, Lorch M, Zeiter S. et al. Non-physical practice improves task performance in an unstable, perturbed environment: Motor imagery and observational balance training. Frontiers in Human Neuroscience 2014; 8: 972 doi:10.3389/fnhum.2014.00972 32 Taube W. et al. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex; a Journal devoted to the Study of the Nervous System and Behaviour 2015; 64: 102-114 doi:10.1016/j.cortex.2014.09.022 33 Keller M, Taube W, Lauber B. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery. Brain Stimulation. 2018 doi:10.1016/j.brs.2018.02.010