Sportphysio 2019; 07(01): 8-15
DOI: 10.1055/a-0818-3165
Focus
Einführung
© Georg Thieme Verlag KG Stuttgart · New York

Neuronale Kontrolle des Gleichgewichts

Martin Keller
,
Wolfgang Taube
Further Information

Publication History

Publication Date:
01 February 2019 (online)

Zusammenfassung

In den letzten Jahren konnten Forscher nachweisen, dass es beim Gleichgewichtstraining auf spinaler und supraspinaler Ebene zu Anpassungen kommt. Diese lasse sich gezielt beeinflussen.

 
  • Literatur

  • 1 Pollock AS, Durward BR, Rowe PJ. et al. What is balance?. Clinical Rehabilitation 2000; 14: 402-406 doi:10.1191/0269215500cr342oa
  • 2 Riach CL, Hayes KC. Maturation of postural sway in young children. Developmental Medicine and Child Neurology 1987; 29: 650-658
  • 3 Peterson ML, Christou E, Rosengren KS. Children achieve adult-like sensory integration during stance at 12-years-old. Gait & Posture 2006; 23: 455-463 doi:10.1016/j.gaitpost.2005.05.003
  • 4 Papegaaij S, Taube W, Baudry S. et al. Aging causes a reorganization of cortical and spinal control of posture. Frontiers in Aging Neuroscience 2014; 6: 28 doi:10.3389/fnagi.2014.00028
  • 5 Gollhofer A, Rapp W. Recovery of stretch reflex responses following mechanical stimulation. European Journal of Applied Physiology and Occupational Physiology 1993; 66: 415-420
  • 6 Trimble MH, Koceja DM. Effect of a reduced base of support in standing and balance training on the soleus H-reflex. The International Journal of Neuroscience 2001; 106: 1-20
  • 7 Katz R, Meunier S, Pierrot-Deseilligny E. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain: A Journal of Neurology 1988; 111 (Pt 2) 417-437
  • 8 Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiologica (Oxford, England) 2008; 193: 101-116 doi:10.1111/j.1748–1716.2008.01850.x
  • 9 Ouchi Y, Okada H, Yoshikawa E. et al. Brain activation during maintenance of standing postures in humans. Brain: A Journal of Neurology 1999; 122: 329-338 doi:10.1093/brain/122.2.329
  • 10 Magnus R. Körperstellung. Heidelberg: Springer; 1924
  • 11 Luccarini P, Gahery Y, Pompeiano O. Injection of a cholinergic agonist in the dorsolateral pontine tegmentum of cats affects the posturokinetic responses to cortical stimulation. Neuroscience Letters 1990; 114: 75-81
  • 12 Stoykov ME, Stojakovich M, Stevens JA. Beneficial effects of postural intervention on prehensile action for an individual with ataxia resulting from brainstem stroke. NeuroRehabilitation 2005; 20: 85-89
  • 13 Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Movement Disorders: official journal of the Movement Disorder Society 1992; 7: 95-109 doi:10.1002/mds.870070202
  • 14 Ilg W, Giese MA, Gizewski ER. et al. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain: A Journal of Neurology 2008; 131: 2913-27 doi:10.1093/brain/awn246
  • 15 Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Current Opinion in Neurobiology 2006; 16: 645-649 doi:10.1016/j.conb.2006.08.016
  • 16 Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology 1994; 72: 479-493
  • 17 Ashburn A, Stack E, Pickering RM. et al. A community-dwelling sample of people with Parkinson’s disease: Characteristics of fallers and non-fallers. Age and Ageing 2001; 30: 47-52
  • 18 Carpenter MG, Allum JH, Honegger F. et al. Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry 2004; 75: 1245-1254 doi:10.1136/jnnp.2003.021147
  • 19 Goble DJ. et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. The Journal of Neuroscience: the official journal of the Society for Neuroscience 2011; 31: 16344-52 doi:10.1523/jneurosci.4159–11.2011
  • 20 Masakado Y. et al. EEG-EMG coherence changes in postural tasks. Electromyography and Clinical Neurophysiology 2008; 48: 27-33
  • 21 Jacobs JV, Horak FB. Cortical control of postural responses. Journal of Neural Transmission (Vienna, Austria) 1996; 114: 1339-48 doi:10.1007/s00702–007–0657–0
  • 22 Tokuno CD, Taube W, Cresswell AG. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiologica (Oxford, England) 2009; 195: 385-395
  • 23 Tokuno CD, Keller M, Carpenter MG. et al. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty. Journal of Neurophysiology. 2018 doi:10.1152/jn.00709.2017
  • 24 Taube W, Schubert M, Gruber M. et al. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Journal of Applied Physiology 2006; 101: 420-429 doi:10.1152/japplphysiol.01447.2005
  • 25 Keller M, Pfusterschmied J, Buchecker M. et al. Improved postural control after slackline training is accompanied by reduced H-reflexes. Scandinavian Jornal of Medicine & Science in Sports 2012; 22: 471-477 doi:10.1111/j.1600–0838.2010.01268.x
  • 26 Taube W. et al. Cortical and spinal adaptations induced by balance training: Correlation between stance stability and corticospinal activation. Acta Physiologica (Oxford, England) 2007; 189: 347-358 doi:10.1111/j.1365–201X.2007.01665.x
  • 27 Puttemans V, Wenderoth N, Swinnen SP. Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: From the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience: the official Journal of the Society for Neuroscience 2005; 25: 4270-78 doi:10.1523/jneurosci.3866–04.2005
  • 28 Taubert M. et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience: the official Journal of the Society for Neuroscience 2010; 30: 11670-77 doi:10.1523/jneurosci.2567–10.2010
  • 29 Freyler K, Weltin E, Gollhofer A. et al. Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait & Posture 2014; 40: 291-296 doi:10.1016/j.gaitpost.2014.04.186
  • 30 Marusic U. et al. Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty. Neural Plasticity 2018; 5651391 doi:10.1155/2018/5651391
  • 31 Taube W, Lorch M, Zeiter S. et al. Non-physical practice improves task performance in an unstable, perturbed environment: Motor imagery and observational balance training. Frontiers in Human Neuroscience 2014; 8: 972 doi:10.3389/fnhum.2014.00972
  • 32 Taube W. et al. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex; a Journal devoted to the Study of the Nervous System and Behaviour 2015; 64: 102-114 doi:10.1016/j.cortex.2014.09.022
  • 33 Keller M, Taube W, Lauber B. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery. Brain Stimulation. 2018 doi:10.1016/j.brs.2018.02.010