CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2019; 79(10): 1100-1109
DOI: 10.1055/a-0834-6468
GebFra Science
Original Article/Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Risk Factors for Chemotherapy-Associated Venous Thromboses in Gynaecological Oncology Patients

Article in several languages: English | deutsch
Sandra Nezi-Cahn
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Isabel Sicking
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Kathrin Almstedt
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Marco Battista
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Anne-Sophie Heimes
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Slavomir Krajnak
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Joscha Steetskamp
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Annette Hasenburg
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
,
Marcus Schmidt
Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

received 28 May 2018
revised 09 January 2019

accepted 15 January 2019

Publication Date:
05 June 2019 (online)

Abstract

Introduction Venous thromboses and their consequences are among the main causes of death in patients with tumour diseases. The objective of this study is the analysis of risk factors and the evaluation of the applicability of two risk scores in a purely gynaecological oncology patient collective. The identification of patients at high risk for the occurrence of venous thromboses could enable the implementation of targeted medication-based thrombosis prophylaxis which has a significant benefit and, simultaneously, a low risk.

Materials and Methods A retrospective case-control study on 152 patients who were undergoing oncological treatment in the Department of Gynaecology of the Mainz University Medical Centre between 2006 and 2013 investigated the data from 104 patients with breast, 26 with ovarian and 22 with cervical cancer. A control was assigned to 76 subjects in the case group who suffered a venous thrombosis during chemotherapy and this control coincided in the points of tumour location, age, lymph node involvement, metastasis and time of initial diagnosis. The group differences were analysed using the χ2 test, t test, Mann-Whitney-U test and a logistic regression analysis.

Results There were clear group differences in the lack of inpatient thrombosis prophylaxis (p = 0.014), elevated leukocyte counts (p = 0.018) prior to the start of chemotherapy and port systems (p = 0.032). Surgical interventions were confirmed to be an independent risk factor (p ≤ 0.001). The Khorana and Protecht scores did not emerge from the analysis as independent predictors for a thrombosis. More patients died in the case group than in the control group (p = 0.028; OR: 8.1; CI: 1.254 – 52.162).

Conclusion In this patient collective, surgeries represent an independent risk factor for venous thromboses. In addition, a correlation was seen between inpatient thrombosis prophylaxis, leukocytosis as well as port systems and an increased risk of thrombosis. Neither the Khorana nor the Protecht score were independent risk factors for venous thromboses. Significantly more thrombosis patients died during the observation period.

 
  • References/Literatur

  • 1 Khorana AA, Francis CW, Culakova E. et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007; 5: 632-634
  • 2 Heit JA, OʼFallon WM, Petterson TM. et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med 2002; 162: 1245-1248
  • 3 Falanga A, Russo L, Verzeroli C. Mechanisms of thrombosis in cancer. Thromb Res 2013; 131 (Suppl. 01) S59-S62
  • 4 Heit JA, Silverstein MD, Mohr DN. et al. Risk factors for deep vein thrombosis and pulmonary embolism: A population-based case-control study. Arch Intern Med 2000; 160: 809-815
  • 5 Blom JW, Vanderschoot JP, Oostindier MJ. et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. J Thromb Haemost 2006; 4: 529-535
  • 6 Geerts WH, Bergqvist D, Pineo GF. et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133 (Suppl. 06) 381S-453S
  • 7 Mandala M, Falanga A, Piccioli A. et al. Venous thromboembolism and cancer: guidelines of the Italian Association of Medical Oncology (AIOM). Crit Rev Oncol Hematol 2006; 59: 194-204
  • 8 Mandala M, Falanga A, Roila F. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2011; 22 (Suppl. 06) vi85-vi92
  • 9 Lyman GH, Khorana AA, Kuderer NM. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013; 31: 2189-2204
  • 10 Lee AYY. Overview of VTE treatment in cancer according to clinical guidelines. Thromb Res 2018; 164 (Suppl. 01) S162-S167
  • 11 Khorana AA, Kuderer NM, Culakova E. et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008; 111: 4902-4907
  • 12 Verso M, Agnelli G, Barni S. et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern Emerg Med 2012; 7: 291-292
  • 13 Kroger K, Weiland D, Ose C. et al. Risk factors for venous thromboembolic events in cancer patients. Ann Oncol 2006; 17: 297-303
  • 14 Khorana AA, Francis CW, Culakova E. et al. Thromboembolism in hospitalized neutropenic cancer patients. J Clin Oncol 2006; 24: 484-490
  • 15 Fachgesellschaften AAdWM. S3-Leitlinie Prophylaxe der venösen Thromboembolie (VTE). 2015. Online: https://www.awmf.org/uploads/tx_szleitlinien/003-001l_S3_VTE-Prophylaxe_2015-12.pdf last access: 23.02.2019
  • 16 Tsai AW, Cushman M, Rosamond WD. et al. Coagulation factors, inflammation markers, and venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). Am J Med 2002; 113: 636-642
  • 17 Connolly GC, Khorana AA, Kuderer NM. et al. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thromb Res 2010; 126: 113-118
  • 18 Decousus H, Bourmaud A, Fournel P. et al. Cancer-associated thrombosis in patients with implanted ports: a prospective multicenter French cohort study (ONCOCIP). Blood 2018; 132: 707-716
  • 19 Lwaleed BA, Chisholm M, Francis JL. The significance of measuring monocyte tissue factor activity in patients with breast and colorectal cancer. Br J Cancer 1999; 80: 279-285
  • 20 Kut C, Mac Gabhann F, Popel AS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer 2007; 97: 978-985
  • 21 Thaler J, Koder S, Kornek G. et al. Microparticle-associated tissue factor activity in patients with metastatic pancreatic cancer and its effect on fibrin clot formation. Transl Res 2014; 163: 145-150
  • 22 Ay C, Simanek R, Vormittag R. et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008; 112: 2703-2708
  • 23 di Carlo E, Iezzi M, Pannellini T. et al. Neutrophils in anti-cancer immunological strategies: old players in new games. J Hematother Stem Cell Res 2001; 10: 739-748
  • 24 Mantovani A, Schioppa T, Porta C. et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006; 25: 315-322
  • 25 Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867
  • 26 De Cicco M, Matovic M, Balestreri L. et al. Central venous thrombosis: an early and frequent complication in cancer patients bearing long-term silastic catheter. A prospective study. Thromb Res 1997; 86: 101-113
  • 27 Cortelezzi A, Moia M, Falanga A. et al. Incidence of thrombotic complications in patients with haematological malignancies with central venous catheters: a prospective multicentre study. Br J Haematol 2005; 129: 811-817
  • 28 De Cicco M. The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 2004; 50: 187-196
  • 29 Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol 2002; 3: 27-34
  • 30 Rickles FR, Falanga A. Activation of clotting factors in cancer. Cancer Treat Res 2009; 148: 31-41
  • 31 Prandoni P, Piccioli A, Girolami A. Cancer and venous thromboembolism: an overview. Haematologica 1999; 84: 437-445
  • 32 Jensvoll H, Blix K, Braekkan SK. et al. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: the Tromso Study. PloS One 2014; 9: e92011
  • 33 Linhardt RJ, Gunay NS. Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost 1999; 25 (Suppl. 03) 5-16
  • 34 Walenga JM, Lyman GH. Evolution of heparin anticoagulants to ultra-low-molecular-weight heparins: a review of pharmacologic and clinical differences and applications in patients with cancer. Crit Rev Oncol Hematol 2013; 88: 1-18
  • 35 Warkentin TE, Pai M, Sheppard JI. et al. Fondaparinux treatment of acute heparin-induced thrombocytopenia confirmed by the serotonin-release assay: a 30-month, 16-patient case series. J Thromb Haemost 2011; 9: 2389-2396
  • 36 Sweetland S, Parkin L, Balkwill A. et al. Smoking, surgery, and venous thromboembolism risk in women: United Kingdom cohort study. Circulation 2013; 127: 1276-1282
  • 37 Khorana AA, Francis CW, Culakova E. et al. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005; 104: 2822-2829
  • 38 Riedl J, Posch F, Konigsbrugge O. et al. Red cell distribution width and other red blood cell parameters in patients with cancer: association with risk of venous thromboembolism and mortality. PloS One 2014; 9: e111440
  • 39 Gussoni G, Frasson S, La Regina M. et al. Three-month mortality rate and clinical predictors in patients with venous thromboembolism and cancer. Findings from the RIETE registry. Thromb Res 2013; 131: 24-30
  • 40 Sorensen HT, Mellemkjaer L, Olsen JH. et al. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000; 343: 1846-1850
  • 41 Tyrrell DJ, Horne AP, Holme KR. et al. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 1999; 46: 151-208
  • 42 Pukac LA, Castellot jr. JJ, Wright jr. TC. et al. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Regul 1990; 1: 435-443
  • 43 Pukac LA, Ottlinger ME, Karnovsky MJ. Heparin suppresses specific second messenger pathways for protooncogene expression in rat vascular smooth muscle cells. J Biol Chem 1992; 267: 3707-3711
  • 44 Lean QY, Patel RP, Stewart N. et al. Identification of pro- and anti-proliferative oligosaccharides of heparins. Integr Biol (Camb) 2013; 6: 90-99
  • 45 Munoz Martin AJ, Ortega I, Font C. et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer 2018; 118: 1056-1061