Krankenhaushygiene up2date 2019; 14(01): 111-125
DOI: 10.1055/a-0836-9708
Antiinfektiva
Georg Thieme Verlag KG Stuttgart · New York

Biozide Wirkstoffe und Biofilm – Entwicklung, Fixierung und Entfernung

Günter Kampf
Further Information

Publication History

Publication Date:
20 March 2019 (online)

Biofilme finden sich im Zusammenhang mit verschiedenen nosokomialen Infektionsarten nicht nur an Medizinprodukten, sondern auch auf anderen Flächen, die mit Desinfektionsmitteln behandelt werden. Dieser Beitrag zeigt, wie unterschiedlich ausgewählte biozide Wirkstoffe aus Desinfektionsmitteln sich auf die Biofilmbildung, -fixierung und -entfernung auswirken.

Kernaussagen
  • Der ideale biozide Wirkstoff hemmt die Biofilmbildung, führt zu keiner Fixierung eines vorhandenen Biofilms, sondern reduziert diesen möglichst stark.

  • Die Wirkung von bioziden Wirkstoffen ist gegenüber Bakterien im Biofilm meist deutlich eingeschränkt.

  • In subletaler Konzentration können Chlorhexidin und Benzalkoniumchlorid bei einigen Spezies die Biofilmbildung verstärken. Deshalb sind in der Hautantiseptik der Nutzen und die Risiken besonders sorgfältig abzuwägen.

  • Zur Flächen- und Instrumentendesinfektion weist Peressigsäure mit einer reduzierten Biofilmbildung, einer schwachen bzw. mäßigen Biofilmfixierung und einer mäßigen bis starken Biofilmentfernung das günstigste Gesamtbild auf.

  • Das günstigste Gesamtbild der bioziden Wirkstoffen zur Wund- oder Schleimhautantiseptik weist PVP-Iod auf. Die Biofilmbildung wird entweder reduziert oder nicht beeinflusst. Die Biofilmentfernung ist meist stark, kann aber auch – in Abhängigkeit vom Erreger – mäßig oder gering sein.

 
  • Literatur

  • 1 Rahman MR, Perisetti A, Coman R. et al. Duodenoscope-associated infections: update on an emerging problem. Dig Dis Sci 2018; DOI: 10.1007/s10620-018-5431-7.
  • 2 Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 2012; 272: 541-561
  • 3 Ledwoch K, Dancer SJ, Otter JA. et al. Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. J Hosp Infect 2018; 100: e47-e56
  • 4 Hoiby N, Bjarnsholt T, Moser C. et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 2015; 21 Suppl 1: S1-S25
  • 5 Kovaleva J. Endoscope drying and its pitfalls. J Hosp Infect 2017; 97: 319-328
  • 6 Gupta P, Sarkar S, Das B. et al. Biofilm, pathogenesis and prevention–a journey to break the wall: a review. Arch Microbiol 2016; 198: 1-15
  • 7 Tote K, Horemans T, Vanden Berghe D. et al. Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2010; 76: 3135-3142
  • 8 Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R. et al. Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 2012; 56: 203-207
  • 9 Luther MK, Bilida S, Mermel LA. et al. Ethanol and Isopropyl Alcohol Exposure Increases Biofilm Formation in Staphylococcus aureus and Staphylococcus epidermidis. Infect Dis Ther 2015; 4: 219-226
  • 10 Redelman CV, Maduakolam C, Anderson GG. Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunol Med Microbiol 2012; 66: 411-418
  • 11 Presterl E, Suchomel M, Eder M. et al. Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis. J Antimicrob Chemother 2007; 60: 417-420
  • 12 Peeters E, Nelis HJ, Coenye T. Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 2008; 70: 361-368
  • 13 Passerini de Rossi B, Feldman L, Pineda MS. et al. Comparative in vitro efficacies of ethanol-, EDTA- and levofloxacin-based catheter lock solutions on eradication of Stenotrophomonas maltophilia biofilms. J Med Microbiol 2012; 61: 1248-1253
  • 14 Corbin A, Pitts B, Parker A. et al. Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 2011; 55: 3338-3344
  • 15 Takenaka S, Trivedi HM, Corbin A. et al. Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 2008; 74: 1869-1875
  • 16 Anand G, Ravinanthan M, Basaviah R. et al. In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care. J Pharm Bioallied Sci 2015; 7: 69-74
  • 17 Zmantar T, Ben Slama R, Fdhila K. et al. Modulation of drug resistance and biofilm formation of Staphylococcus aureus isolated from the oral cavity of Tunisian children. Braz J Infect Dis 2017; 21: 27-34
  • 18 Brindle ER, Miller DA, Stewart PS. Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB. Biotechnol Bioeng 2011; 108: 2968-2977
  • 19 Houari A, Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett Appl Microbiol 2007; 45: 652-656
  • 20 Koo H, Hayacibara MF, Schobel BD. et al. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 2003; 52: 782-789
  • 21 Pereira CA, Costa AC, Liporoni PC. et al. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. J Infect Public Health 2016; 9: 324-330
  • 22 Calixto GMF, Duque C, Aida KL. et al. Development and characterization of p 1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms. Int J Nanomed 2018; 13: 31-41
  • 23 Takahashi H, Nadres ET, Kuroda K. Cationic Amphiphilic Polymers with Antimicrobial Activity for Oral Care Applications: Eradication of S. mutans Biofilm. Biomacromolecules 2017; 18: 257-265
  • 24 Forbes S, Dobson CB, Humphreys GJ. et al. Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob Agents Chemother 2014; 58: 5809-5817
  • 25 Hubner NO, Matthes R, Koban I. et al. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 2010; 23 Suppl: 28-34
  • 26 da Silva PM, Acosta EJ, Pinto Lde R. et al. Microscopical analysis of Candida albicans biofilms on heat-polymerised acrylic resin after chlorhexidine gluconate and sodium hypochlorite treatments. Mycoses 2011; 54: e712-e717
  • 27 Kuhn DM, George T, Chandra J. et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 2002; 46: 1773-1780
  • 28 Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M. et al. Cleaning capacity of octenidine as root canal irrigant: A scanning electron microscopy study. Microsc Res Tech 2018; 81: 523-527
  • 29 Choi YS, Kim C, Moon JH. et al. Removal and killing of multispecies endodontic biofilms by N-acetylcysteine. Braz J Microbiol 2018; 49: 184-188
  • 30 Dostie S, Alkadi LT, Owen G. et al. Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm. J Clin Periodontol 2017; 44: 403-409
  • 31 Verkaik MJ, Busscher HJ, Jager D. et al. Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dentist 2011; 39: 218-224
  • 32 Liaqat I, Sabri AN. Effect of biocides on biofilm bacteria from dental unit water lines. Curr Microbiol 2008; 56: 619-624
  • 33 Rocha GR, Florez Salamanca EJ, de Barros AL. et al. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. BMC Complem Alternate Med 2018; 18: 61
  • 34 Jurczyk K, Nietzsche S, Ender C. et al. In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin Oral Invest 2016; 20: 2165-2173
  • 35 Sethi KS, Karde PA, Joshi CP. Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: An in vitro study. Indian J Dent Res 2016; 27: 535-539
  • 36 Ebrahimi A, Hemati M, Shabanpour Z. et al. Effects of benzalkonium chloride on planktonic growth and biofilm formation by animal bacterial pathogens. Jundishapur J Microbiol 2015; 8: e16058
  • 37 Chaieb K, Zmantar T, Souiden Y. et al. XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microb Pathogenes 2011; 50: 1-5
  • 38 Machado I, Lopes SP, Sousa AM. et al. Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride. J Basic Microbiol 2012; 52: 43-52
  • 39 Pagedar A, Singh J. Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin. J Food Sci Technol 2015; 52: 5317-5322
  • 40 Machado I, Graca J, Lopes H. et al. Antimicrobial Pressure of Ciprofloxacin and Gentamicin on Biofilm Development by an Endoscope-Isolated Pseudomonas aeruginosa. ISRN Biotechnol 2013; 2013: 178646
  • 41 Simoes M, Pereira MO, Vieira MJ. Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 2005; 39: 5142-5152
  • 42 Mangalappalli-Illathu AK, Korber DR. Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother 2006; 50: 3588-3596
  • 43 Grande Burgos MJ, Lucas López R, López Aguayo M. et al. Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control 2013; 30: 214-221
  • 44 Köse H, Yapar N. The comparison of various disinfectantsʼ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turk J Med Sci 2017; 47: 1287-1294
  • 45 Glynn AA, OʼDonnell ST, Molony DC. et al. Hydrogen peroxide induced repression of icaADBC transcription and biofilm development in Staphylococcus epidermidis. J Orthop Res 2009; 27: 627-630
  • 46 de Souza EL, Meira QG, de Medeiros Barbosa I. et al. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Braz J Microbiol 2014; 45: 67-75
  • 47 Henoun Loukili N, Becker H, Harno J. et al. Effect of peracetic acid and aldehyde disinfectants on biofilm. J Hosp Infect 2004; 58: 151-154
  • 48 Loukili NH, Granbastien B, Faure K. et al. Effect of different stabilized preparations of peracetic acid on biofilm. J Hosp Infect 2006; 63: 70-72
  • 49 Montebugnoli L, Chersoni S, Prati C. et al. A between-patient disinfection method to control water line contamination and biofilm inside dental units. J Hosp Infect 2004; 56: 297-304
  • 50 Wilson CE, Cathro PC, Rogers AH. et al. Clonal diversity in biofilm formation by Enterococcus faecalis in response to environmental stress associated with endodontic irrigants and medicaments. Int Endodont J 2015; 48: 210-219
  • 51 Mohmmed SA, Vianna ME, Penny MR. et al. A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dental Mat 2016; 32: 1289-1300
  • 52 Buzón-Durán L, Alonso-Calleja C, Riesco-Peláez F. et al. Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol 2017; 65: 294-301
  • 53 Almatroudi A, Gosbell IB, Hu H. et al. Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control. J Hosp Infect 2016; 93: 263-270
  • 54 Capita R, Riesco-Pelaez F, Alonso-Hernando A. et al. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl Environ Microbiol 2014; 80: 1268-1280
  • 55 DeQueiroz GA, Day DF. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol 2007; 103: 794-802
  • 56 Capita R, Buzon-Duran L, Riesco-Pelaez F. et al. Effect of sub-lethal concentrations of biocides on the structural parameters and viability of the biofilms formed by salmonella typhimurium. Foodborne Pathogens Dis 2017; 14: 350-356
  • 57 Amalaradjou MA, Venkitanarayanan K. Antibiofilm Effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens 2014; 3: 404-416
  • 58 Junka A, Bartoszewicz M, Smutnicka D. et al. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J 2014; 11: 730-734
  • 59 Rupf S, Balkenhol M, Sahrhage TO. et al. Biofilm inhibition by an experimental dental resin composite containing octenidine dihydrochloride. Dental Mat 2012; 28: 974-984
  • 60 Swidsinski A, Loening-Baucke V, Swidsinski S. et al. Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report. Arch Gynecol Obstet 2015; 291: 605-609
  • 61 Simoes M, Pereira MO, Vieira MJ. Monitoring the effects of biocide treatment of Pseudomonas fluorescens biofilms formed under different flow regimes. Water Sci Technol 2003; 47: 217-223
  • 62 Kampf G. Ethanol. In: Kampf G. ed. Antiseptic Stewardship: Biocide Resistance and clinical Implications. Cham: Springer; 2018: 9-35
  • 63 Kampf G, Degenhardt S, Lackner S. et al. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection. BMC Infect Dis 2014; 14: 37
  • 64 Feld H, Oberender N. [The uncontrolled spread of quaternary ammonium compounds (QACs) in everyday products as well as in medical and industrial areas – critical for humans, materials and the environment]. Hyg Med 2018; 43: 37-45
  • 65 Machado I, Graca J, Sousa AM. et al. Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa. Biofouling 2011; 27: 1151-1159
  • 66 KRINKO am Robert Koch Institut. Prävention postoperativer Wundinfektionen. Bundesgesundheitsblatt 2018; 61: 448-473
  • 67 WHO. Global Guidelines for the Prevention of surgical Site Infections. Geneva: WHO; 2016
  • 68 Harnoss JC, Assadian O, Kramer A. et al. Comparison of chlorhexidine-isopropanol with isopropanol skin antisepsis for prevention of surgical-site infection after abdominal surgery. Br J Surg 2018; 105: 893-899
  • 69 Mimoz O, Lucet JC, Kerforne T. et al. Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 2015; 386: 2069-2077
  • 70 Lutz JT, Diener IV, Freiberg K. et al. Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial. Infection 2016; 44: 707-712