Ultraschall Med 2019; 40(04): 425-453
DOI: 10.1055/a-0838-9937
Guidelines & Recommendations
© Georg Thieme Verlag KG Stuttgart · New York

The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018[]

Die EFSUMB-Leitlinien und Empfehlungen für die klinische Praxis der Elastografie bei nichthepatischen Anwendungen: Update 2018
Adrian Săftoiu
1   Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Romania
,
Odd Helge Gilja
2   National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
,
Paul S. Sidhu
3   Department of Radiology, King’s College London, King’s College Hospital, United Kingdom of Great Britain and Northern Ireland
,
Christoph F. Dietrich
4   Medizinische Klinik 2, Caritas-Krankenhaus, Bad Mergentheim, Germany
,
Vito Cantisani
5   Radiological, Pathological and Oncological Sciences Department, University Sapienza, Rome, Italy
,
Dominique Amy
6   Radiology Department, Breast Center, Aix-en-Provence, France
,
Michael Bachmann-Nielsen
7   Department of Radiology, Copenhagen-University-Hospital, Rigshospitalet, Copenhagen OE, Denmark
,
Flaviu Bob
8   Nephrology Department, University of Medicine and Pharmacy “Victor Babeș” Timișoara, Romania
,
Jörg Bojunga
9   Med. Klinik I, Department of Endocrinology Universitätsklinikum, Frankfurt am Main, Germany
,
Marko Brock
10   Department of Urology, Marien Hospital Herne, Ruhr-University Bochum, Germany
,
Fabrizio Calliada
11   Department of Radiology, Policlinico San Matteo, University of Pavia, Pavia, Italy
,
Dirk André Clevert
12   Department of Clinical Radiology, University of Munich-Grosshadern Campus, Munich, Germany
,
Jean-Michel Correas
13   Service de Radiologie adultes, Hôpital Necker, Université Paris Descartes, Paris, France
,
Mirko D’Onofrio
14   Department of Radiology, G.B. Rossi University Hospital, University of Verona, Verona, Italy
,
Caroline Ewertsen
7   Department of Radiology, Copenhagen-University-Hospital, Rigshospitalet, Copenhagen OE, Denmark
,
André Farrokh
15   Department of Breast Imaging and Interventions, University Hospital Schleswig-Holstein Campus Kiel, Germany
,
Daniela Fodor
16   2nd Medical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania
,
Pietro Fusaroli
17   Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Bologna/Hospital of Imola, Italy
,
Roald Flesland Havre
2   National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
,
Michael Hocke
18   Internal Medicine II, Klinikum Meiningen, Germany
,
André Ignee
4   Medizinische Klinik 2, Caritas-Krankenhaus, Bad Mergentheim, Germany
,
Christian Jenssen
19   Klinik für Innere Medizin, Krankenhaus Märkisch Oderland Strausberg/Wriezen, Germany
,
Andrea Sabine Klauser
20   Universitätsklinik für Radiologie/Medizinische Universität Innsbruck, Austria
,
Christian Kollmann
21   Center for Medical Physics & Biomedical Engineering, Medical University of Vienna, Austria
,
Maija Radzina
22   Radiology Research Laboratory, Riga Stradins University, Medical faculty, University of Latvia, Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, Riga, Latvia
,
Kumar V. Ramnarine
23   Medical Physics Department, Guy’s and St Thomas’ NHS Foundation Trust, London, and University of Leicester, Leicester, United Kingdom of Great Britain and Northern Ireland
,
Luca Maria Sconfienza
24   IRCCS Istituto Ortopedico Galeazzi, Milano Italy and Department of Biomedical Sciences for Health, University of Milano, Italy
,
Carolina Solomon
25   Radiology Department, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Emergency Clinical County Hospital, Cluj-Napoca, Romania
,
Ioan Sporea
26   Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeș” Timișoara, Romania
,
Horia Ștefănescu
27   Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
,
Mickael Tanter
28   Physics for Medicine Paris Institute, INSERM, CNRS, ESPCI Paris, France
,
Peter Vilmann
29   Endoscopy Department, Copenhagen University Hospital Herlev, Denmark
› Institutsangaben
Weitere Informationen

Publikationsverlauf

22. August 2018

10. März 2019

Publikationsdatum:
25. Juni 2019 (online)

Abstract

This manuscript describes the use of ultrasound elastography, with the exception of liver applications, and represents an update of the 2013 EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) Guidelines and Recommendations on the clinical use of elastography.

Zusammenfassung

Diese Arbeit beschreibt den Einsatz der Ultraschall-Elastografie mit Ausnahme der Leberanwendungen und ist eine Aktualisierung der Leitlinien und Empfehlungen der EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) von 2013 zum klinischen Einsatz der Elastografie.

All authors contributed equally to the manuscript.


 
  • References

  • 1 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall in Der Medizin 2013; 34: 169-184
  • 2 Cosgrove D, Piscaglia F, Bamber J. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 2: Clinical Applications. Ultraschall in Der Medizin 2013; 34: 238-253
  • 3 Education and Practical Standards Committee ErFoSfUiMaB. Minimum training recommendations for the practice of medical ultrasound. Ultraschall in Med 2006; 27: 79-105
  • 4 Cosgrove D, Barr R, Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43: 4-26
  • 5 Tatar IG, Kurt A, Yilmaz KB. et al. The learning curve of real time elastosonography: a preliminary study conducted for the assessment of malignancy risk in thyroid nodules. Med Ultrason 2013; 15: 278-284
  • 6 Grădinaru-Taşcău O, Sporea I, Bota S. et al. Does experience play a role in the ability to perform liver stiffness measurements by means of supersonic shear imaging (SSI)?. Med Ultrason 2013; 15: 180-183
  • 7 Shiina T, Nightingale KR, Palmeri ML. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126-1147
  • 8 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall in Der Medizin 2017; 38: E16-E47
  • 9 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Short Version). Ultraschall in Der Medizin 2017; 38: 377-394
  • 10 Ferraioli G, Filice C, Castera L. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol 2015; 41: 1161-1179
  • 11 Barr RG, Nakashima K, Amy D. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 2015; 41: 1148-1160
  • 12 Stenzel M, Mentzel HJ. Ultrasound elastography and contrast-enhanced ultrasound in infants, children and adolescents. Eur J Radiol 2014; 83: 1560-1569
  • 13 Goldschmidt I, Streckenbach C, Dingemann C. et al. Application and limitations of transient liver elastography in children. J Pediatr Gastroenterol Nutr 2013; 57: 109-113
  • 14 Goldschmidt I, Brauch C, Poynard T. et al. Spleen stiffness measurement by transient elastography to diagnose portal hypertension in children. J Pediatr Gastroenterol Nutr 2014; 59: 197-203
  • 15 Peralta L, Molina FS, Melchor J. et al. Transient Elastography to Assess the Cervical Ripening during Pregnancy: A Preliminary Study. Ultraschall in Med 2017; 38: 395-402
  • 16 Friedrich-Rust M, Schoelzel F, Linzbach S. et al. Safety of transient elastography in patients with implanted cardiac rhythm devices. Dig Liver Dis 2017; 49: 314-316
  • 17 Tabaru M, Yoshikawa H, Azuma T. et al. Experimental study on temperature rise of acoustic radiation force elastography. J Med Ultrason (2001) 2012; 39: 137-146
  • 18 Herman BA, Harris GR. Models and regulatory considerations for transient temperature rise during diagnostic ultrasound pulses. Ultrasound Med Biol 2002; 28: 1217-1224
  • 19 Liu Y, Herman BA, Soneson JE. et al. Thermal safety simulations of transient temperature rise during acoustic radiation force-based ultrasound elastography. Ultrasound Med Biol 2014; 40: 1001-1014
  • 20 Palmeri ML, Nightingale KR. On the thermal effects associated with radiation force imaging of soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 551-565
  • 21 Skurczynski MJ, Duck FA, Shipley JA. et al. Evaluation of experimental methods for assessing safety for ultrasound radiation force elastography. Br J Radiol 2009; 82: 666-674
  • 22 Deng Y, Palmeri ML, Rouze NC. et al. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging. Ultrasound Med Biol 2018; 44: 303-310
  • 23 Itoh A, Ueno E, Tohno E. et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341-350
  • 24 Carlsen JF, Ewertsen C, Sletting S. et al. Strain histograms are equal to strain ratios in predicting malignancy in breast tumours. PLoS One 2017; 12: e0186230
  • 25 Grajo JR, Barr RG. Strain elastography for prediction of breast cancer tumour grades. J Ultrasound Med 2014; 33: 129-134
  • 26 Hatzung G, Grunwald S, Zygmunt M. et al. Sonoelastography in the diagnosis of malignant and benign breast lesions: initial clinical experiences. Ultraschall in Med 2010; 31: 596-603
  • 27 Cho N, Jang M, Lyou CY. et al. Distinguishing benign from malignant masses at breast US: combined US elastography and color doppler US-influence on radiologist accuracy. Radiology 2012; 262: 80-90
  • 28 Wojcinski S, Farrokh A, Weber S. et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall in Med 2010; 31: 484-491
  • 29 Sadigh G, Carlos RC, Neal CH. et al. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 2012; 133: 23-35
  • 30 Cho N, Moon WK, Kim HY. et al. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 2010; 29: 1-7
  • 31 Sadigh G, Carlos RC, Neal CH. et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 2012; 134: 923-931
  • 32 Berg WA, Cosgrove DO, Doré CJ. et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262: 435-449
  • 33 Evans A, Whelehan P, Thomson K. et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 2012; 263: 673-677
  • 34 Chang JM, Park IA, Lee SH. et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur Radiol 2013; 23: 2450-2458
  • 35 Choi WJ, Kim HH, Cha JH. et al. Predicting prognostic factors of breast cancer using shear wave elastography. Ultrasound Med Biol 2014; 40: 269-274
  • 36 Berg WA, Mendelson EB, Cosgrove DO. et al. Quantitative Maximum Shear-Wave Stiffness of Breast Masses as a Predictor of Histopathologic Severity. Am J Roentgenol 2015; 205: 448-455
  • 37 Tamaki K, Tamaki N, Kamada Y. et al. Non-invasive evaluation of axillary lymph node status in breast cancer patients using shear wave elastography. Tohoku J Exp Med 2013; 231: 211-216
  • 38 Wojcinski S, Dupont J, Schmidt W. et al. Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases. BMC Med Imaging 2012; 12: 35
  • 39 Park YM, Fornage BD, Benveniste AP. et al. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone. Am J Roentgenol 2014; 203: 1371-1378
  • 40 Youk JH, Gweon HM, Son EJ. et al. Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Res Treat 2013; 138: 119-126
  • 41 Evans A, Rauchhaus P, Whelehan P. et al. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?. Breast Cancer Res Treat 2014; 143: 153-157
  • 42 Falou O, Sadeghi-Naini A, Prematilake S. et al. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography. Transl Oncol 2013; 6: 17-24
  • 43 Evans A, Armstrong S, Whelehan P. et al. Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer?. Br J Cancer 2013; 109: 2798-2802
  • 44 Lee SH, Chang JM, Han W. et al. Shear-Wave Elastography for the Detection of Residual Breast Cancer After Neoadjuvant Chemotherapy. Ann Surg Oncol 2015; 22 (Suppl. 03) S376-S384
  • 45 Tanter M, Bercoff J, Athanasiou A. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34: 1373-1386
  • 46 Kelloff GJ, Choyke P, Coffey DS. et al. Challenges in clinical prostate cancer: role of imaging. Am J Roentgenol 2009; 192: 1455-1470
  • 47 Singh H, Canto EI, Shariat SF. et al. Predictors of prostate cancer after initial negative systematic 12 core biopsy. J Urol 2004; 171: 1850-1854
  • 48 Ashley RA, Inman BA, Routh JC. et al. Reassessing the diagnostic yield of saturation biopsy of the prostate. Eur Urol 2008; 53: 976-981
  • 49 Onur R, Littrup PJ, Pontes JE. et al. Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J Urol 2004; 172: 512-514
  • 50 Pallwein L, Mitterberger M, Struve P. et al. Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int 2007; 100: 42-46
  • 51 Salomon G, Köllerman J, Thederan I. et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol 2008; 54: 1354-1362
  • 52 Brock M, von Bodman C, Sommerer F. et al. Comparison of real-time elastography with grey-scale ultrasonography for detection of organ-confined prostate cancer and extra capsular extension: a prospective analysis using whole mount sections after radical prostatectomy. BJU Int 2011; 108: E217-222
  • 53 Brock M, von Bodman C, Palisaar RJ. et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol 2012; 187: 2039-2043
  • 54 Kapoor A, Mahajan G, Sidhu BS. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol 2011; 37: 1374-1381
  • 55 Walz J, Marcy M, Pianna JT. et al. Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J Urol 2011; 29: 589-594
  • 56 Aigner F, Pallwein L, Junker D. et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 2010; 184: 913-917
  • 57 Aboumarzouk OM, Ogston S, Huang Z. et al. Diagnostic accuracy of transrectal elastosonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis. BJU Int 2012; 110: 1414-1423 ; discussion 1423
  • 58 Kamoi K, Okihara K, Ochiai A. et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol 2008; 34: 1025-1032
  • 59 Bercoff J, Tanter M, Muller M. et al. The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 1523-1536
  • 60 Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 2012; 28: 13-20
  • 61 Correas JM, Tissier AM, Khairoune A. et al. Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging 2013; 94: 551-560
  • 62 Aigner F, Schäfer G, Steiner E. et al. Value of enhanced transrectal ultrasound targeted biopsy for prostate cancer diagnosis: a retrospective data analysis. World J Urol 2012; 30: 341-346
  • 63 Brock M, Eggert T, Löppenberg B. et al. Value of real-time elastography to guide the systematic prostate biopsy in men with normal digital rectal exam. Aktuelle Urol 2013; 44: 40-44
  • 64 Brock M, Löppenberg B, Roghmann F. et al. Impact of real-time elastography on magnetic resonance imaging/ultrasound fusion guided biopsy in patients with prior negative prostate biopsies. J Urol 2015; 193: 1191-1197
  • 65 Brock M, Roghmann F, Sonntag C. et al. Fusion of Magnetic Resonance Imaging and Real-Time Elastography to Visualize Prostate Cancer: A Prospective Analysis using Whole Mount Sections after Radical Prostatectomy. Ultraschall in Med 2015; 36: 355-361
  • 66 Friedrich-Rust M, Meyer G, Dauth N. et al. Interobserver agreement of Thyroid Imaging Reporting and Data System (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS One 2013; 8: e77927
  • 67 Ito Y, Amino N, Yokozawa T. et al. Ultrasonographic evaluation of thyroid nodules in 900 patients: comparison among ultrasonographic, cytological, and histological findings. Thyroid 2007; 17: 1269-1276
  • 68 Tae HJ, Lim DJ, Baek KH. et al. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid 2007; 17: 461-466
  • 69 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26: 1-133
  • 70 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225-237
  • 71 Kwak JY, Han KH, Yoon JH. et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011; 260: 892-899
  • 72 Horvath E, Majlis S, Rossi R. et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009; 94: 1748-1751
  • 73 Park JY, Lee HJ, Jang HW. et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009; 19: 1257-1264
  • 74 Yoon JH, Lee HS, Kim EK. et al. Malignancy Risk Stratification of Thyroid Nodules: Comparison between the Thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association Management Guidelines. Radiology 2016; 278: 917-924
  • 75 Cantisani V, Grazhdani H, Drakonaki E. et al. Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation. Int J Endocrinol 2015; 2015: 908575
  • 76 Cantisani V, Maceroni P, D’Andrea V. et al. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience. Eur Radiol 2016; 26: 1441-1449
  • 77 Cantisani V, Grazhdani H, Ricci P. et al. Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur Radiol 2014; 24: 143-150
  • 78 Ghajarzadeh M, Sodagari F, Shakiba M. Diagnostic accuracy of sonoelastography in detecting malignant thyroid nodules: a systematic review and meta-analysis. Am J Roentgenol 2014; 202: W379-W389
  • 79 Razavi SA, Hadduck TA, Sadigh G. et al. Comparative effectiveness of elastographic and B-mode ultrasound criteria for diagnostic discrimination of thyroid nodules: a meta-analysis. Am J Roentgenol 2013; 200: 1317-1326
  • 80 Sun J, Cai J, Wang X. Real-time ultrasound elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J Ultrasound Med 2014; 33: 495-502
  • 81 Hu X, Liu Y, Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96: e8282
  • 82 Nattabi HA, Sharif NM, Yahya N. et al. Is Diagnostic Performance of Quantitative 2D-Shear Wave Elastography Optimal for Clinical Classification of Benign and Malignant Thyroid Nodules?: A Systematic Review and Meta-analysis. Acad Radiol 2017 (Epub ahead of print)
  • 83 Tian W, Hao S, Gao B. et al. Comparing the Diagnostic Accuracy of RTE and SWE in Differentiating Malignant Thyroid Nodules from Benign Ones: a Meta-Analysis. Cell Physiol Biochem 2016; 39: 2451-2463
  • 84 Lin P, Chen M, Liu B. et al. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol 2014; 24: 2729-2738
  • 85 Zhan J, Jin JM, Diao XH. et al. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules – A meta-analysis. Eur J Radiol 2015; 84: 2181-2186
  • 86 Rago T, Vitti P. Role of thyroid ultrasound in the diagnostic evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008; 22: 913-928
  • 87 Rago T, Vitti P. Potential value of elastosonography in the diagnosis of malignancy in thyroid nodules. Q J Nucl Med Mol Imaging 2009; 53: 455-464
  • 88 Rago T, Scutari M, Santini F. et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab 2010; 95: 5274-5280
  • 89 Ciledag N, Arda K, Aribas BK. et al. The utility of ultrasound elastography and MicroPure imaging in the differentiation of benign and malignant thyroid nodules. Am J Roentgenol 2012; 198: W244-W249
  • 90 Vidal-Casariego A, López-González L, Jiménez-Pérez A. et al. Accuracy of ultrasound elastography in the diagnosis of thyroid cancer in a low-risk population. Exp Clin Endocrinol Diabetes 2012; 120: 635-638
  • 91 Hong Y, Liu X, Li Z. et al. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med 2009; 28: 861-867
  • 92 Unlütürk U, Erdoğan MF, Demir O. et al. Ultrasound elastography is not superior to grayscale ultrasound in predicting malignancy in thyroid nodules. Thyroid 2012; 22: 1031-1038
  • 93 Zhan J, Diao XH, Chai QL. et al. Comparative study of acoustic radiation force impulse imaging with real-time elastography in differential diagnosis of thyroid nodules. Ultrasound Med Biol 2013; 39: 2217-2225
  • 94 Rago T, Santini F, Scutari M. et al. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 2007; 92: 2917-2922
  • 95 Kagoya R, Monobe H, Tojima H. Utility of elastography for differential diagnosis of benign and malignant thyroid nodules. Otolaryngol Head Neck Surg 2010; 143: 230-234
  • 96 He YP, Xu HX, Li XL. et al. Comparison of Virtual Touch Tissue Imaging & Quantification (VTIQ) and Toshiba shear wave elastography (T-SWE) in diagnosis of thyroid nodules: Initial experience. Clin Hemorheol Microcirc 2017; 66: 15-26
  • 97 Wang F, Chang C, Gao Y. et al. Does Shear Wave Elastography Provide Additional Value in the Evaluation of Thyroid Nodules That Are Suspicious for Malignancy?. J Ultrasound Med 2016; 35: 2397-2404
  • 98 Swan KZ, Nielsen VE, Bibby BM. et al. Is the reproducibility of shear wave elastography of thyroid nodules high enough for clinical use? A methodological study. Clin Endocrinol (Oxf) 2017; 86: 606-613
  • 99 Bardet S, Ciappuccini R, Pellot-Barakat C. et al. Shear Wave Elastography in Thyroid Nodules with Indeterminate Cytology: Results of a Prospective Bicentric Study. Thyroid 2017; 27: 1441-1449
  • 100 Liu Z, Jing H, Han X. et al. Shear wave elastography combined with the thyroid imaging reporting and data system for malignancy risk stratification in thyroid nodules. Oncotarget 2017; 8: 43406-43416
  • 101 Dobruch-Sobczak K, Gumińska A, Bakuła-Zalewska E. et al. Shear wave elastography in medullary thyroid carcinoma diagnostics. J Ultrason 2015; 15: 358-367
  • 102 Dobruch-Sobczak K, Zalewska EB, Gumińska A. et al. Diagnostic Performance of Shear Wave Elastography Parameters Alone and in Combination with Conventional B-Mode Ultrasound Parameters for the Characterization of Thyroid Nodules: A Prospective, Dual-Center Study. Ultrasound Med Biol 2016; 42: 2803-2811
  • 103 Wang D, He YP, Zhang YF. et al. The diagnostic performance of shear wave speed (SWS) imaging for thyroid nodules with elasticity modulus and SWS measurement. Oncotarget 2017; 8: 13387-13399
  • 104 Duan SB, Yu J, Li X. et al. Diagnostic value of two-dimensional shear wave elastography in papillary thyroid microcarcinoma. Onco Targets Ther 2016; 9: 1311-1317
  • 105 Liu MJ, Men YM, Zhang YL. et al. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography. Oncol Lett 2017; 14: 867-871
  • 106 Wang F, Chang C, Chen M. et al. Does Lesion Size Affect the Value of Shear Wave Elastography for Differentiating Between Benign and Malignant Thyroid Nodules?. J Ultrasound Med 2018; 37: 601-609
  • 107 Liu BJ, Lu F, Xu HX. et al. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound. Int J Clin Exp Med 2015; 8: 15362-15372
  • 108 Liu BJ, Zhao CK, Xu HX. et al. Quality measurement on shear wave speed imaging: diagnostic value in differentiation of thyroid malignancy and the associated factors. Oncotarget 2017; 8: 4848-4959
  • 109 Zhou H, Yue WW, Du LY. et al. A Modified Thyroid Imaging Reporting and Data System (mTI-RADS) For Thyroid Nodules in Coexisting Hashimoto’s Thyroiditis. Sci Rep 2016; 6: 26410
  • 110 Pandey NN, Pradhan GS, Manchanda A. et al. Diagnostic Value of Acoustic Radiation Force Impulse Quantification in the Differentiation of Benign and Malignant Thyroid Nodules. Ultrason Imaging 2017; 39: 326-336
  • 111 Liu BJ, Li DD, Xu HX. et al. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis. Ultrasound Med Biol 2015; 41: 3035-3043
  • 112 Russ G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 2016; 35: 25-38
  • 113 Arda K, Ciledag N, Aktas E. et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am J Roentgenol 2011; 197: 532-536
  • 114 Gallotti A, D’Onofrio M, Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol Med 2010; 115: 889-897
  • 115 D’Onofrio M, Tremolada G, De Robertis R. et al. Prevent Pancreatic Fistula after Pancreatoduodenectomy: Possible Role of Ultrasound Elastography. Dig Surg 2018; 35: 164-170
  • 116 Goertz RS, Schuderer J, Strobel D. et al. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumour. Eur J Radiol 2016; 85: 2211-2216
  • 117 Harada N, Ishizawa T, Inoue Y. et al. Acoustic radiation force impulse imaging of the pancreas for estimation of pathologic fibrosis and risk of postoperative pancreatic fistula. J Am Coll Surg 2014; 219: 887-894.e885
  • 118 He Y, Wang H, Li XP. et al. Pancreatic Elastography From Acoustic Radiation Force Impulse Imaging for Evaluation of Diabetic Microangiopathy. Am J Roentgenol 2017; 209: 775-780
  • 119 Hirooka Y, Kuwahara T, Irisawa A. et al. JSUM ultrasound elastography practice guidelines: pancreas. J Med Ultrason (2001) 2015; 42: 151-174
  • 120 Kawada N, Tanaka S. Elastography for the pancreas: Current status and future perspective. World J Gastroenterol 2016; 22: 3712-3724
  • 121 Kawada N, Tanaka S, Uehara H. et al. Potential use of point shear wave elastography for the pancreas: a single center prospective study. Eur J Radiol 2014; 83: 620-624
  • 122 Kuwahara T, Hirooka Y, Kawashima H. et al. Usefulness of shear wave elastography as a quantitative diagnosis of chronic pancreatitis. J Gastroenterol Hepatol 2018; 33: 756-761
  • 123 Kuwahara T, Hirooka Y, Kawashima H. et al. Quantitative evaluation of pancreatic tumour fibrosis using shear wave elastography. Pancreatology 2016; 16: 1063-1068
  • 124 Llamoza-Torres CJ, Fuentes-Pardo M, Álvarez-Higueras FJ. et al. Usefulness of percutaneous elastography by acoustic radiation force impulse for the non-invasive diagnosis of chronic pancreatitis. Rev Esp Enferm Dig 2016; 108: 450-456
  • 125 Onoyama T, Koda M, Fujise Y. et al. Utility of virtual touch quantification in the diagnosis of pancreatic ductal adenocarcinoma. Clin Imaging 2017; 42: 64-67
  • 126 Park MK, Jo J, Kwon H. et al. Usefulness of acoustic radiation force impulse elastography in the differential diagnosis of benign and malignant solid pancreatic lesions. Ultrasonography 2014; 33: 26-33
  • 127 Pozzi R, Parzanese I, Baccarin A. et al. Point shear-wave elastography in chronic pancreatitis: A promising tool for staging disease severity. Pancreatology 2017; 17: 905-910
  • 128 Sağlam D, Bilgici MC, Kara C. et al. Acoustic Radiation Force Impulse Elastography in Determining the Effects of Type 1 Diabetes on Pancreas and Kidney Elasticity in Children. Am J Roentgenol 2017; 209: 1143-1149
  • 129 Stumpf S, Jaeger H, Graeter T. et al. Influence of age, sex, body mass index, alcohol, and smoking on shear wave velocity (p-SWE) of the pancreas. Abdom Radiol (NY) 2016; 41: 1310-1316
  • 130 Xie J, Zou L, Yao M. et al. A Preliminary Investigation of Normal Pancreas and Acute Pancreatitis Elasticity Using Virtual Touch Tissue Quantification (VTQ) Imaging. Med Sci Monit 2015; 21: 1693-1699
  • 131 Yashima Y, Sasahira N, Isayama H. et al. Acoustic radiation force impulse elastography for noninvasive assessment of chronic pancreatitis. J Gastroenterol 2012; 47: 427-432
  • 132 Zaro R, Lupsor-Platon M, Cheviet A. et al. The pursuit of normal reference values of pancreas stiffness by using Acoustic Radiation Force Impulse (ARFI) elastography. Med Ultrason 2016; 18: 425-430
  • 133 D’Onofrio M, De Robertis R, Crosara S. et al. Acoustic radiation force impulse with shear wave speed quantification of pancreatic masses: A prospective study. Pancreatology 2016; 16: 106-109
  • 134 Chantarojanasiri T, Hirooka Y, Kawashima H. et al. Age-related changes in pancreatic elasticity: When should we be concerned about their effect on strain elastography?. Ultrasonics 2016; 69: 90-96
  • 135 Chantarojanasiri T, Hirooka Y, Kawashima H. et al. Endoscopic ultrasound in diagnosis of solid pancreatic lesions: Elastography or contrast-enhanced harmonic alone versus the combination. Endosc Int Open 2017; 5: E1136-E1143
  • 136 Dominguez-Muñoz JE, Iglesias-Garcia J, Castiñeira Alvariño M. et al. EUS elastography to predict pancreatic exocrine insufficiency in patients with chronic pancreatitis. Gastrointest Endosc 2015; 81: 136-142
  • 137 Dyrla P, Gil J, Florek M. et al. Elastography in pancreatic solid tumours diagnoses. Prz Gastroenterol 2015; 10: 41-46
  • 138 Harada N, Yoshizumi T, Maeda T. et al. Preoperative Pancreatic Stiffness by Real-time Tissue Elastography to Predict Pancreatic Fistula After Pancreaticoduodenectomy. Anticancer Res 2017; 37: 1909-1915
  • 139 Hirche TO, Ignee A, Barreiros AP. et al. Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy 2008; 40: 910-917
  • 140 Iglesias García JJ, Lariño Noia J, Alvarez Castro A. et al. Second-generation endoscopic ultrasound elastography in the differential diagnosis of solid pancreatic masses. Pancreatic cancer vs. inflammatory mass in chronic pancreatitis. Rev Esp Enferm Dig 2009; 101: 723-730
  • 141 Iglesias-Garcia J, Domínguez-Muñoz JE, Castiñeira-Alvariño M. et al. Quantitative elastography associated with endoscopic ultrasound for the diagnosis of chronic pancreatitis. Endoscopy 2013; 45: 781-788
  • 142 Iglesias-Garcia J, Larino-Noia J, Abdulkader I. et al. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology 2010; 139: 1172-1180
  • 143 Iglesias-Garcia J, Lindkvist B, Lariño-Noia J. et al. Differential diagnosis of solid pancreatic masses: contrast-enhanced harmonic (CEH-EUS), quantitative-elastography (QE-EUS), or both?. United European Gastroenterol J 2017; 5: 236-246
  • 144 Iordache S, Costache MI, Popescu CF. et al. Clinical impact of EUS elastography followed by contrast-enhanced EUS in patients with focal pancreatic masses and negative EUSguided FNA. Medical Ultrasonography 2016; 18: 18-24
  • 145 Itokawa F, Itoi T, Sofuni A. et al. EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. J Gastroenterol 2011; 46: 843-853
  • 146 Janssen J, Papavassiliou I. Effect of aging and diffuse chronic pancreatitis on pancreas elasticity evaluated using semiquantitative EUS elastography. Ultraschall in Med 2014; 35: 253-258
  • 147 Kawada N, Tanaka S, Uehara H. et al. Alteration of strain ratio evaluated by transabdominal ultrasound elastography may predict the efficacy of preoperative chemoradiation performed for pancreatic ductal carcinoma: preliminary results. Hepatogastroenterology 2014; 61: 480-483
  • 148 Kim SY, Cho JH, Kim YJ. et al. Diagnostic efficacy of quantitative endoscopic ultrasound elastography for differentiating pancreatic disease. J Gastroenterol Hepatol 2017; 32: 1115-1122
  • 149 Kongkam P, Lakananurak N, Navicharern P. et al. Combination of EUS-FNA and elastography (strain ratio) to exclude malignant solid pancreatic lesions: A prospective single-blinded study. J Gastroenterol Hepatol 2015; 30: 1683-1689
  • 150 Opačić D, Rustemović N, Kalauz M. et al. Endoscopic ultrasound elastography strain histograms in the evaluation of patients with pancreatic masses. World J Gastroenterol 2015; 21: 4014-4019
  • 151 Rana SS, Dambalkar A, Chhabra P. et al. Is pancreatic exocrine insufficiency in celiac disease related to structural alterations in pancreatic parenchyma?. Ann Gastroenterol 2016; 29: 363-366
  • 152 Rustemović N, Kalauz M, Grubelić Ravić K. et al. Differentiation of Pancreatic Masses via Endoscopic Ultrasound Strain Ratio Elastography Using Adjacent Pancreatic Tissue as the Reference. Pancreas 2017; 46: 347-351
  • 153 Săftoiu A, Vilmann P. Differential diagnosis of focal pancreatic masses by semiquantitative EUS elastography: between strain ratios and strain histograms. Gastrointest Endosc 2013; 78: 188-189
  • 154 Săftoiu A, Vilmann P, Gorunescu F. et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc 2008; 68: 1086-1094
  • 155 Săftoiu A, Vilmann P, Gorunescu F. et al. Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. Endoscopy 2011; 43: 596-603
  • 156 Saftoiu A, Vilmann P, Gorunescu F. et al. Efficacy of an Artificial Neural Network- Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. Clinical Gastroenterology and Hepatology 2012; 10: U84-U167
  • 157 Cui XW, Chang JM, Kan QC. et al. Endoscopic ultrasound elastography: Current status and future perspectives. World J Gastroenterol 2015; 21: 13212-13224
  • 158 Dietrich CF. Elastography, the new dimension in ultrasonography. Praxis (Bern 1994) 2011; 100: 1533-1542
  • 159 Dietrich CF, Barr RG, Farrokh A. et al. Strain Elastography – How To Do It?. Ultrasound Int Open 2017; 3: E137-E149
  • 160 Dietrich CF, Cantisani V. Current status and perspectives of elastography. Eur J Radiol 2014; 83: 403-404
  • 161 Dietrich CF, Hirche TO, Ott M. et al. Real-time tissue elastography in the diagnosis of autoimmune pancreatitis. Endoscopy 2009; 41: 718-720
  • 162 Dietrich CF, Săftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol 2014; 83: 405-414
  • 163 Hocke M, Ignee A, Dietrich CF. Advanced endosonographic diagnostic tools for discrimination of focal chronic pancreatitis and pancreatic carcinoma--elastography, contrast enhanced high mechanical index (CEHMI) and low mechanical index (CELMI) endosonography in direct comparison. Z Gastroenterol 2012; 50: 199-203
  • 164 Janssen J, Schlörer E, Greiner L. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc 2007; 65: 971-978
  • 165 Azemoto N, Kumagi T, Koizumi M. et al. Diagnostic Challenge in Pancreatic Sarcoidosis using Endoscopic Ultrasonography. Intern Med 2018; 57: 231-235
  • 166 Chantarojanasiri T, Hirooka Y, Kawashima H. et al. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation. Endosc Int Open 2016; 4: E1223-E1226
  • 167 Itoh Y, Itoh A, Kawashima H. et al. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). J Gastroenterol 2014; 49: 1183-1192
  • 168 Jafri M, Sachdev AH, Khanna L. et al. The Role of Real Time Endoscopic Ultrasound Guided Elastography for Targeting EUS-FNA of Suspicious Pancreatic Masses: A Review of the Literature and A Single Center Experience. JOP 2016; 17: 516-524
  • 169 Kuwahara T, Hirooka Y, Kawashima H. et al. Quantitative diagnosis of chronic pancreatitis using EUS elastography. J Gastroenterol 2017; 52: 868-874
  • 170 Kuwahara T, Hirooka Y, Kawashima H. et al. Usefulness of endoscopic ultrasonography-elastography as a predictive tool for the occurrence of pancreatic fistula after pancreatoduodenectomy. J Hepatobiliary Pancreat Sci 2017; 24: 649-656
  • 171 Lee TH, Cho YD, Cha SW. et al. Endoscopic ultrasound elastography for the pancreas in Korea: a preliminary single center study. Clin Endosc 2013; 46: 172-177
  • 172 Pei Q, Zou X, Zhang X. et al. Diagnostic value of EUS elastography in differentiation of benign and malignant solid pancreatic masses: a meta-analysis. Pancreatology 2012; 12: 402-408
  • 173 Popescu A, Ciocalteu AM, Gheonea DI. et al. Utility of endoscopic ultrasound multimodal examination with fine needle aspiration for the diagnosis of pancreatic insulinoma – a case report. Current health sciences journal 2012; 38: 36-40
  • 174 Rana SS, Sharma R, Guleria S. et al. Endoscopic ultrasound (EUS) elastography and contrast enhanced EUS in groove pancreatitis. Indian J Gastroenterol 2018; 37: 70-71
  • 175 Schrader H, Wiese M, Ellrichmann M. et al. Diagnostic value of quantitative EUS elastography for malignant pancreatic tumours: relationship with pancreatic fibrosis. Ultraschall in Med 2012; 33: E196-E201
  • 176 Soares JB, Iglesias-Garcia J, Goncalves B. et al. Interobserver agreement of EUS elastography in the evaluation of solid pancreatic lesions. Endosc Ultrasound 2015; 4: 244-249
  • 177 Rustemovic N, Opacic D, Ostojic Z. et al. Comparison of elastography methods in patients with pancreatic masses. Endosc Ultrasound 2014; 3: S4
  • 178 Saftoiu A, Vilman P. Endoscopic ultrasound elastography – a new imaging technique for the visualization of tissue elasticity distribution. J Gastrointestin Liver Dis 2006; 15: 161-165
  • 179 Mateen MA, Muheet KA, Mohan RJ. et al. Evaluation of ultrasound based acoustic radiation force impulse (ARFI) and eSie touch sonoelastography for diagnosis of inflammatory pancreatic diseases. JOP 2012; 13: 36-44
  • 180 Goya C, Hamidi C, Hattapoglu S. et al. Use of acoustic radiation force impulse elastography to diagnose acute pancreatitis at hospital admission: comparison with sonography and computed tomography. J Ultrasound Med 2014; 33: 1453-1460
  • 181 Domínguez-Muñoz JE. Predicting Pancreatic Exocrine Insufficiency With EUS Elastography. Gastroenterol Hepatol (N Y) 2016; 12: 511-512
  • 182 Uchida H, Hirooka Y, Itoh A. et al. Feasibility of tissue elastography using transcutaneous ultrasonography for the diagnosis of pancreatic diseases. Pancreas 2009; 38: 17-22
  • 183 Friedrich-Rust M, Schlueter N, Smaczny C. et al. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis. J Cyst Fibros 2013; 12: 431-439
  • 184 Sugimoto M, Takahashi S, Kojima M. et al. What is the nature of pancreatic consistency? Assessment of the elastic modulus of the pancreas and comparison with tactile sensation, histology, and occurrence of postoperative pancreatic fistula after pancreaticoduodenectomy. Surgery 2014; 156: 1204-1211
  • 185 Hatano M, Watanabe J, Kushihata F. et al. Quantification of pancreatic stiffness on intraoperative ultrasound elastography and evaluation of its relationship with postoperative pancreatic fistula. Int Surg 2015; 100: 497-502
  • 186 D’Onofrio M, Crosara S, De Robertis R. et al. Elastography of the pancreas. Eur J Radiol 2014; 83: 415-419
  • 187 Dong Y, D’Onofrio M, Hocke M. et al. Autoimmune pancreatitis: Imaging features. Endosc Ultrasound 2018; 7: 196-203
  • 188 Lee TK, Kang CM, Park MS. et al. Prediction of postoperative pancreatic fistulas after pancreatectomy: assessment with acoustic radiation force impulse elastography. J Ultrasound Med 2014; 33: 781-786
  • 189 Hu DM, Gong TT, Zhu Q. Endoscopic ultrasound elastography for differential diagnosis of pancreatic masses: a meta-analysis. Dig Dis Sci 2013; 58: 1125-1131
  • 190 Mei M, Ni J, Liu D. et al. EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. Gastrointest Endosc 2013; 77: 578-589
  • 191 Li X, Xu W, Shi J. et al. Endoscopic ultrasound elastography for differentiating between pancreatic adenocarcinoma and inflammatory masses: a meta-analysis. World J Gastroenterol 2013; 19: 6284-6291
  • 192 Ying L, Lin X, Xie ZL. et al. Clinical utility of endoscopic ultrasound elastography for identification of malignant pancreatic masses: a meta-analysis. J Gastroenterol Hepatol 2013; 28: 1434-1443
  • 193 Iglesias-Garcia J, Larino-Noia J, Abdulkader I. et al. EUS elastography for the characterization of solid pancreatic masses. Gastrointest Endosc 2009; 70: 1101-1108
  • 194 Giovannini M, Thomas B, Erwan B. et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: A multicenter study. World Journal of Gastroenterology 2009; 15: 1587-1593
  • 195 Ignee A, Jenssen C, Hocke M. et al. Contrast-enhanced (endoscopic) ultrasound and endoscopic ultrasound elastography in gastrointestinal stromal tumours. Endoscopic Ultrasound 2017; 6: 55-60
  • 196 Havre RF, Ødegaard S, Gilja OH. et al. Characterization of solid focal pancreatic lesions using endoscopic ultrasonography with real-time elastography. Scand J Gastroenterol 2014; 49: 742-751
  • 197 Dawwas MF, Taha H, Leeds JS. et al. Diagnostic accuracy of quantitative EUS elastography for discriminating malignant from benign solid pancreatic masses: a prospective, single-center study. Gastrointest Endosc 2012; 76: 953-961
  • 198 Mayerle J, Beyer G, Simon P. et al. Prospective cohort study comparing transient EUS guided elastography to EUS-FNA for the diagnosis of solid pancreatic mass lesions. Pancreatology 2016; 16: 110-114
  • 199 Figueiredo FA, da Silva PM, Monges G. et al. Yield of Contrast-Enhanced Power Doppler Endoscopic Ultrasonography and Strain Ratio Obtained by EUS-Elastography in the Diagnosis of Focal Pancreatic Solid Lesions. Endosc Ultrasound 2012; 1: 143-149
  • 200 Popescu A, Ciocalteu AM, Gheonea DI. et al. Utility of endoscopic ultrasound multimodal examination with fine needle aspiration for the diagnosis of pancreatic insulinoma – a case report. Curr Health Sci J 2012; 38: 36-40
  • 201 Deprez PH. EUS elastography: is it replacing or supplementing tissue acquisition?. Gastrointest Endosc 2013; 77: 590-592
  • 202 Săftoiu A, Iordache SA, Gheonea DI. et al. Combined contrast-enhanced power Doppler and real-time sonoelastography performed during EUS, used in the differential diagnosis of focal pancreatic masses (with videos). Gastrointest Endosc 2010; 72: 739-747
  • 203 Dumonceau JM, Deprez PH, Jenssen C. et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated January 2017. Endoscopy 2017; 49: 695-714
  • 204 Jenssen C, Hocke M, Fusaroli P. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV – EUS-guided interventions: General Aspects and EUS-guided Sampling (Short Version). Ultraschall in Med 2016; 37: 157-169
  • 205 Jenssen C, Hocke M, Fusaroli P. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV – EUS-guided Interventions: General aspects and EUS-guided sampling (Long Version). Ultraschall in Med 2016; 37: E33-E76
  • 206 Hewitt MJ, McPhail MJ, Possamai L. et al. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc 2012; 75: 319-331
  • 207 Dietrich C, Sahai A, D’Onofrio M. et al. Differential diagnosis of small solid pancreatic lesions. Gastrointestinal Endoscopy 2016; 84: 933-940
  • 208 D’Onofrio M, Crosara S, Canestrini S. et al. Virtual analysis of pancreatic cystic lesion fluid content by ultrasound acoustic radiation force impulse quantification. J Ultrasound Med 2013; 32: 647-651
  • 209 D’Onofrio M, Gallotti A, Falconi M. et al. Acoustic radiation force impulse ultrasound imaging of pancreatic cystic lesions: preliminary results. Pancreas 2010; 39: 939-940
  • 210 D’Onofrio M, Gallotti A, Martone E. et al. Solid appearance of pancreatic serous cystadenoma diagnosed as cystic at ultrasound acoustic radiation force impulse imaging. JOP 2009; 10: 543-546
  • 211 D’Onofrio M, Gallotti A, Mucelli RP. Pancreatic mucinous cystadenoma at ultrasound acoustic radiation force impulse (ARFI) imaging. Pancreas 2010; 39: 684-685
  • 212 D’Onofrio M, Gallotti A, Salvia R. et al. Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol 2011; 80: 241-244
  • 213 Havre RF, Waage JR, Gilja OH. et al. Real-Time Elastography: Strain Ratio Measurements Are Influenced by the Position of the Reference Area. Ultraschall in Med 2011 (Epub ahead of print)
  • 214 Nylund K, Ødegaard S, Hausken T. et al. Sonography of the small intestine. World J Gastroenterol 2009; 15: 1319-1330
  • 215 Nylund K, Maconi G, Hollerweger A. et al. EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound Part 1: Examination Techniques and Normal Findings (Long version). Ultraschall in Der Medizin 2017; 38: E1-E15
  • 216 Kim K, Johnson LA, Jia C. et al. Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol 2008; 34: 902-912
  • 217 Stidham RW, Higgins PD. Imaging of intestinal fibrosis: current challenges and future methods. United European Gastroenterol J 2016; 4: 515-522
  • 218 Dillman JR, Stidham RW, Higgins PD. et al. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology 2013; 267: 757-766
  • 219 Sconfienza LM, Cavallaro F, Colombi V. et al. In-vivo Axial-strain Sonoelastography Helps Distinguish Acutely-inflamed from Fibrotic Terminal Ileum Strictures in Patients with Crohn’s Disease: Preliminary Results. Ultrasound Med Biol 2016; 42: 855-863
  • 220 Havre RF, Leh S, Gilja OH. et al. Strain assessment in surgically resected inflammatory and neoplastic bowel lesions. Ultraschall in Med 2014; 35: 149-158
  • 221 Pescatori LC, Mauri G, Savarino E. et al. Bowel Sonoelastography in Patients with Crohn’s Disease: A Systematic Review. Ultrasound Med Biol 2018; 44: 297-302
  • 222 Baumgart DC, Müller HP, Grittner U. et al. US-based Real-time Elastography for the Detection of Fibrotic Gut Tissue in Patients with Stricturing Crohn Disease. Radiology 2015; 275: 889-899
  • 223 Fraquelli M, Branchi F, Cribiù FM. et al. The Role of Ultrasound Elasticity Imaging in Predicting Ileal Fibrosis in Crohn’s Disease Patients. Inflamm Bowel Dis 2015; 21: 2605-2612
  • 224 Serra C, Rizzello F, Pratico’ C. et al. Real-time elastography for the detection of fibrotic and inflammatory tissue in patients with stricturing Crohn’s disease. J Ultrasound 2017; 20: 273-284
  • 225 Orlando S, Fraquelli M, Coletta M. et al. Ultrasound Elasticity Imaging predicts therapeutic outcomes of patients with Crohn’s disease treated with anti-tumour necrosis factor antibodies. J Crohns Colitis 2018; 12: 63-70
  • 226 Waage JE, Bach SP, Pfeffer F. et al. Combined endorectal ultrasonography and strain elastography for the staging of early rectal cancer. Colorectal Dis 2015; 17: 50-56
  • 227 Waage JE, Leh S, Røsler C. et al. Endorectal ultrasonography, strain elastography and MRI differentiation of rectal adenomas and adenocarcinomas. Colorectal Dis 2015; 17: 124-131
  • 228 Waage JE, Rafaelsen SR, Borley NR. et al. Strain Elastography Evaluation of Rectal Tumours: Inter- and Intraobserver Reproducibility. Ultraschall in Med 2015; 36: 611-617
  • 229 Rafaelsen SR, Vagn-Hansen C, Sørensen T. et al. Elastography and diffusion-weighted MRI in patients with rectal cancer. Br J Radiol 2015; 88: 20150294
  • 230 Chen LD, Wang W, Xu JB. et al. Assessment of Rectal Tumours with Shear-Wave Elastography before Surgery: Comparison with Endorectal US. Radiology 2017; 285: 279-292
  • 231 Arena U, Lupsor Platon M, Stasi C. et al. Liver stiffness is influenced by a standardized meal in patients with chronic hepatitis C virus at different stages of fibrotic evolution. Hepatology 2013; 58: 65-72
  • 232 Berzigotti A, De Gottardi A, Vukotic R. et al. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS One 2013; 8: e58742
  • 233 Ștefănescu H, Grigorescu M, Lupşor M. et al. Spleen stiffness measurement using Fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients. J Gastroenterol Hepatol 2011; 26: 164-170
  • 234 Colecchia A, Montrone L, Scaioli E. et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 2012; 143: 646-654
  • 235 Procopet B, Berzigotti A, Abraldes JG. et al. Real-time shear-wave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol 2015; 62: 1068-1075
  • 236 Karlas T, Lindner F, Tröltzsch M. et al. Assessment of spleen stiffness using acoustic radiation force impulse imaging (ARFI): definition of examination standards and impact of breathing maneuvers. Ultraschall in Med 2014; 35: 38-43
  • 237 Jansen C, Bogs C, Verlinden W. et al. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study. Liver Int 2017; 37: 396-405
  • 238 Samir AE, Dhyani M, Vij A. et al. Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology 2015; 274: 888-896
  • 239 Grgurevic I, Puljiz Z, Brnic D. et al. Liver and spleen stiffness and their ratio assessed by real-time two dimensional-shear wave elastography in patients with liver fibrosis and cirrhosis due to chronic viral hepatitis. Eur Radiol 2015; 25: 3214-3221
  • 240 Song J, Huang J, Huang H. et al. Performance of spleen stiffness measurement in prediction of clinical significant portal hypertension: A meta-analysis. Clin Res Hepatol Gastroenterol 2018; 42: 216-226
  • 241 Zykus R, Jonaitis L, Petrenkienė V. et al. Liver and spleen transient elastography predicts portal hypertension in patients with chronic liver disease: a prospective cohort study. BMC Gastroenterol 2015; 15: 183
  • 242 Takuma Y, Nouso K, Morimoto Y. et al. Portal Hypertension in Patients with Liver Cirrhosis: Diagnostic Accuracy of Spleen Stiffness. Radiology 2016; 279: 609-619
  • 243 Attia D, Schoenemeier B, Rodt T. et al. Evaluation of Liver and Spleen Stiffness with Acoustic Radiation Force Impulse Quantification Elastography for Diagnosing Clinically Significant Portal Hypertension. Ultraschall in Med 2015; 36: 603-610
  • 244 Balakrishnan M, Souza F, Muñoz C. et al. Liver and Spleen Stiffness Measurements by Point Shear Wave Elastography via Acoustic Radiation Force Impulse: Intraobserver and Interobserver Variability and Predictors of Variability in a US Population. J Ultrasound Med 2016; 35: 2373-2380
  • 245 Elkrief L, Rautou PE, Ronot M. et al. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 2015; 275: 589-598
  • 246 Singh S, Eaton JE, Murad MH. et al. Accuracy of spleen stiffness measurement in detection of esophageal varices in patients with chronic liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2014; 12: 935-945.e934
  • 247 Calvaruso V, Bronte F, Conte E. et al. Modified spleen stiffness measurement by transient elastography is associated with presence of large oesophageal varices in patients with compensated hepatitis C virus cirrhosis. J Viral Hepat 2013; 20: 867-874
  • 248 Stefanescu H, Allegretti G, Salvatore V. et al. Bidimensional shear wave ultrasound elastography with supersonic imaging to predict presence of oesophageal varices in cirrhosis. Liver Int 2017; 37: 1405
  • 249 Bota S, Sporea I, Sirli R. et al. Can ARFI elastography predict the presence of significant esophageal varices in newly diagnosed cirrhotic patients?. Ann Hepatol 2012; 11: 519-525
  • 250 Colecchia A, Colli A, Casazza G. et al. Spleen stiffness measurement can predict clinical complications in compensated HCV-related cirrhosis: a prospective study. J Hepatol 2014; 60: 1158-1164
  • 251 Gao J, Ran HT, Ye XP. et al. The stiffness of the liver and spleen on ARFI Imaging pre and post TIPS placement: a preliminary observation. Clin Imaging 2012; 36: 135-141
  • 252 Novelli PM, Cho K, Rubin JM. Sonographic assessment of spleen stiffness before and after transjugular intrahepatic portosystemic shunt placement with or without concurrent embolization of portal systemic collateral veins in patients with cirrhosis and portal hypertension: a feasibility study. J Ultrasound Med 2015; 34: 443-449
  • 253 Verlinden W, Bourgeois S, Gigase P. et al. Liver Fibrosis Evaluation Using Real-time Shear Wave Elastography in Hepatitis C-Monoinfected and Human Immunodeficiency Virus/Hepatitis C-Coinfected Patients. J Ultrasound Med 2016; 35: 1299-1308
  • 254 Pons M, Simón-Talero M, Millán L. et al. Basal values and changes of liver stiffness predict the risk of disease progression in compensated advanced chronic liver disease. Dig Liver Dis 2016; 48: 1214-1219
  • 255 Sharma P, Mishra SR, Kumar M. et al. Liver and spleen stiffness in patients with extrahepatic portal vein obstruction. Radiology 2012; 263: 893-899
  • 256 Furuichi Y, Moriyasu F, Taira J. et al. Noninvasive diagnostic method for idiopathic portal hypertension based on measurements of liver and spleen stiffness by ARFI elastography. J Gastroenterol 2013; 48: 1061-1068
  • 257 Seijo S, Reverter E, Miquel R. et al. Role of hepatic vein catheterisation and transient elastography in the diagnosis of idiopathic portal hypertension. Dig Liver Dis 2012; 44: 855-860
  • 258 Uchida H, Sakamoto S, Kobayashi M. et al. The degree of spleen stiffness measured on acoustic radiation force impulse elastography predicts the severity of portal hypertension in patients with biliary atresia after portoenterostomy. J Pediatr Surg 2015; 50: 559-564
  • 259 Colecchia A, Marasco G, Festi D. Are Noninvasive Methods Clinically Useful in Advanced, Decompensated Liver Cirrhosis When “Les Jeux Sont Faits”?. Radiology 2016; 278: 304-305
  • 260 Iurlo A, Cattaneo D, Giunta M. et al. Transient elastography spleen stiffness measurements in primary myelofibrosis patients: a pilot study in a single centre. Br J Haematol 2015; 170: 890-892
  • 261 Cassinotto C, Charrie A, Mouries A. et al. Liver and spleen elastography using supersonic shear imaging for the non-invasive diagnosis of cirrhosis severity and oesophageal varices. Dig Liver Dis 2015; 47: 695-701
  • 262 Correas JM, Anglicheau D, Joly D. et al. Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int 2016; 90: 1199-1210
  • 263 Derieppe M, Delmas Y, Gennisson JL. et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol 2012; 22: 243-250
  • 264 Franchi-Abella S, Elie C, Correas JM. Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging 2013; 94: 497-501
  • 265 Ferraioli G, Tinelli C, Malfitano A. et al. Performance of real-time strain elastography, transient elastography, and aspartate-to-platelet ratio index in the assessment of fibrosis in chronic hepatitis C. Am J Roentgenol 2012; 199: 19-25
  • 266 Nightingale K, Bentley R, Trahey G. Observations of tissue response to acoustic radiation force: opportunities for imaging. Ultrason Imaging 2002; 24: 129-138
  • 267 Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol 2010; 36: 1379-1394
  • 268 Syversveen T, Brabrand K, Midtvedt K. et al. Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification--a pilot study. Transpl Int 2011; 24: 100-105
  • 269 Ozkan F, Yavuz YC, Inci MF. et al. Interobserver variability of ultrasound elastography in transplant kidneys: correlations with clinical-Doppler parameters. Ultrasound Med Biol 2013; 39: 4-9
  • 270 Guo LH, Xu HX, Fu HJ. et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One 2013; 8: e68925
  • 271 Bob F, Bota S, Sporea I. et al. Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI)--preliminary results. PLoS One 2014; 9: e113761
  • 272 Grenier N, Poulain S, Lepreux S. et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 2012; 22: 2138-2146
  • 273 Samir AE, Allegretti AS, Zhu Q. et al. Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol 2015; 16: 119
  • 274 Gennisson JL, Rénier M, Catheline S. et al. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am 2007; 122: 3211-3219
  • 275 Gennisson JL, Deffieux T, Macé E. et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36: 789-801
  • 276 Gennisson JL, Grenier N, Combe C. et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 2012; 38: 1559-1567
  • 277 Bota S, Bob F, Sporea I. et al. Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology. Ultrasound Med Biol 2015; 41: 1-6
  • 278 Asano K, Ogata A, Tanaka K. et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?. J Ultrasound Med 2014; 33: 793-801
  • 279 Bob F, Bota S, Sporea I. et al. Relationship between the estimated glomerular filtration rate and kidney shear wave speed values assessed by acoustic radiation force impulse elastography: a pilot study. J Ultrasound Med 2015; 34: 649-654
  • 280 Singh H, Panta OB, Khanal U. et al. Renal Cortical Elastography: Normal Values and Variations. J Med Ultrasound 2017; 25: 215-220
  • 281 Grenier N, Gennisson JL, Cornelis F. et al. Renal ultrasound elastography. Diagn Interv Imaging 2013; 94: 545-550
  • 282 Arndt R, Schmidt S, Loddenkemper C. et al. Noninvasive evaluation of renal allograft fibrosis by transient elastography--a pilot study. Transpl Int 2010; 23: 871-877
  • 283 Stock KF, Klein BS, Cong MT. et al. ARFI-based tissue elasticity quantification and kidney graft dysfunction: first clinical experiences. Clin Hemorheol Microcirc 2011; 49: 527-535
  • 284 Marticorena GarciaSR, Guo J, Dürr M. et al. Comparison of ultrasound shear wave elastography with magnetic resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol 2018; 59: 1139-1145
  • 285 Grass L, Szekely N, Alrajab A. et al. Point shear wave elastography (pSWE) using Acoustic Radiation Force Impulse (ARFI) imaging: a feasibility study and norm values for renal parenchymal stiffness in healthy children and adolescents. Med Ultrason 2017; 19: 366-373
  • 286 Sasaki Y, Hirooka Y, Kawashima H. et al. Measurements of renal shear wave velocities in chronic kidney disease patients. Acta Radiol 2018; 59: 884-890
  • 287 He WY, Jin YJ, Wang WP. et al. Tissue elasticity quantification by acoustic radiation force impulse for the assessment of renal allograft function. Ultrasound Med Biol 2014; 40: 322-329
  • 288 Bob F, Grosu I, Sporea I. et al. Ultrasound-Based Shear Wave Elastography in the Assessment of Patients with Diabetic Kidney Disease. Ultrasound Med Biol 2017; 43: 2159-2166
  • 289 Syversveen T, Midtvedt K, Berstad AE. et al. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur Radiol 2012; 22: 2130-2137
  • 290 Wang L, Xia P, Lv K. et al. Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol 2014; 24: 1694-1699
  • 291 Lee J, Oh YT, Joo DJ. et al. Acoustic Radiation Force Impulse Measurement in Renal Transplantation: A Prospective, Longitudinal Study With Protocol Biopsies. Medicine (Baltimore) 2015; 94: e1590
  • 292 Bob F, Grosu I, Sporea I. et al. Is there a correlation between kidney shear wave velocity measured with VTQ and histological parameters in patients with chronic glomerulonephritis? A pilot study. Med Ultrason 2018; 1: 27-31
  • 293 Early HM, Cheang EC, Aguilera JM. et al. Utility of Shear Wave Elastography for Assessing Allograft Fibrosis in Renal Transplant Recipients: A Pilot Study. J Ultrasound Med 2018; 37: 1455-1465
  • 294 Yoo MG, Jung DC, Oh YT. et al. Usefulness of Multiparametric Ultrasound for Evaluating Structural Abnormality of Transplanted Kidney: Can We Predict Histologic Abnormality on Renal Biopsy in Advance?. Am J Roentgenol 2017; 209: W139-W144
  • 295 Bruno C, Caliari G, Zaffanello M. et al. Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in paediatric patients with vesicoureteral reflux: preliminary results. Eur Radiol 2013; 23: 3477-3484
  • 296 Clevert DA, Stock K, Klein B. et al. Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumours of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc 2009; 43: 95-107
  • 297 Sidhu PS. Ultrasound Collaboration across Europe: An EFSUMB success story in politically troubled times?. Ultraschall in Med 2016; 37: 451-452
  • 298 Tan S, Miao LY, Cui LG. et al. Value of Shear Wave Elastography Versus Contrast-Enhanced Sonography for Differentiating Benign and Malignant Superficial Lymphadenopathy Unexplained by Conventional Sonography. J Ultrasound Med 2017; 36: 189-199
  • 299 Ghajarzadeh M, Mohammadifar M, Azarkhish K. et al. Sono-elastography for Differentiating Benign and Malignant Cervical Lymph Nodes: A Systematic Review and Meta-Analysis. Int J Prev Med 2014; 5: 1521-1528
  • 300 Ying L, Hou Y, Zheng HM. et al. Real-time elastography for the differentiation of benign and malignant superficial lymph nodes: a meta-analysis. Eur J Radiol 2012; 81: 2576-2584
  • 301 Suh CH, Choi YJ, Baek JH. et al. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis. Eur Radiol 2017; 27: 222-230
  • 302 Xu W, Shi J, Zeng X. et al. EUS elastography for the differentiation of benign and malignant lymph nodes: a meta-analysis. Gastrointest Endosc 2011; 74: 1001-1009 ; quiz 1115.e1001–1004
  • 303 Mao XW, Yang JY, Zheng XX. et al. Comparison of two quantitative methods of endobronchial ultrasound real-time elastography for evaluating intrathoracic lymph nodes. Zhonghua Jie He He Hu Xi Za Zhi 2017; 40: 431-434
  • 304 Sun J, Zheng X, Mao X. et al. Endobronchial Ultrasound Elastography for Evaluation of Intrathoracic Lymph Nodes: A Pilot Study. Respiration 2017; 93: 327-338
  • 305 Jung WS, Kim JA, Son EJ. et al. Shear wave elastography in evaluation of cervical lymph node metastasis of papillary thyroid carcinoma: elasticity index as a prognostic implication. Ann Surg Oncol 2015; 22: 111-116
  • 306 You J, Chen J, Xiang F. et al. The value of quantitative shear wave elastography in differentiating the cervical lymph nodes in patients with thyroid nodules. J Med Ultrason (2001) 2018; 45: 251-259
  • 307 Janssen J, Dietrich CF, Will U. et al. Endosonographic elastography in the diagnosis of mediastinal lymph nodes. Endoscopy 2007; 39: 952-957
  • 308 Bhatia KS, Lee YY, Yuen EH. et al. Ultrasound elastography in the head and neck. Part II. Accuracy for malignancy. Cancer Imaging 2013; 13: 260-276
  • 309 Larsen MH, Fristrup C, Hansen TP. et al. Endoscopic ultrasound, endoscopic sonoelastography, and strain ratio evaluation of lymph nodes with histology as gold standard. Endoscopy 2012; 44: 759-766
  • 310 Łasecki M, Olchowy C, Sokołowska-Dąbek D. et al. Modified sonoelastographic scale score for lymph node assessment in lymphoma – a preliminary report. J Ultrason 2015; 15: 45-55
  • 311 Dudea SM, Botar-Jid C, Dumitriu D. et al. Differentiating benign from malignant superficial lymph nodes with sonoelastography. Med Ultrason 2013; 15: 132-139
  • 312 De Zordo T, Chhem R, Smekal V. et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall in Med 2010; 31: 394-400
  • 313 De Zordo T, Fink C, Feuchtner GM. et al. Real-time sonoelastography findings in healthy Achilles tendons. Am J Roentgenol 2009; 193: W134-W138
  • 314 Turan A, Teber MA, Yakut ZI. et al. Sonoelastographıc assessment of the age-related changes of the Achilles tendon. Med Ultrason 2015; 17: 58-61
  • 315 Aubry S, Risson JR, Kastler A. et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 2013; 42: 1143-1150
  • 316 Chen XM, Cui LG, He P. et al. Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study. J Ultrasound Med 2013; 32: 449-455
  • 317 Ooi CC, Schneider ME, Malliaras P. et al. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med Biol 2015; 41: 15-25
  • 318 Klauser AS, Miyamoto H, Tamegger M. et al. Achilles tendon assessed with sonoelastography: histologic agreement. Radiology 2013; 267: 837-842
  • 319 Balaban M, Idilman IS, Ipek A. et al. Elastographic Findings of Achilles Tendons in Asymptomatic Professional Male Volleyball Players. J Ultrasound Med 2016; 35: 2623-2628
  • 320 Ooi CC, Schneider ME, Malliaras P. et al. Prevalence of morphological and mechanical stiffness alterations of mid Achilles tendons in asymptomatic marathon runners before and after a competition. Skeletal Radiol 2015; 44: 1119-1127
  • 321 Ozcan AN, Tan S, Tangal NG. et al. Real-time sonoelastography of the patellar and quadriceps tendons: pattern description in professional athletes and healthy volunteers. Med Ultrason 2016; 18: 299-304
  • 322 Klauser AS, Pamminger M, Halpern EJ. et al. Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation. Eur Radiol 2017; 27: 3460-3466
  • 323 De Zordo T, Lill SR, Fink C. et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. Am J Roentgenol 2009; 193: 180-185
  • 324 Lacourpaille L, Nordez A, Hug F. et al. Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography. Acta Physiol (Oxf) 2014; 211: 135-146
  • 325 Klauser AS, Pamminger MJ, Halpern EJ. et al. Sonoelastography of the Common Flexor Tendon of the Elbow with Histologic Agreement: A Cadaveric Study. Radiology 2017; 283: 486-491
  • 326 Tudisco C, Bisicchia S, Stefanini M. et al. Tendon quality in small unilateral supraspinatus tendon tears. Real-time sonoelastography correlates with clinical findings. Knee Surg Sports Traumatol Arthrosc 2015; 23: 393-398
  • 327 Rosskopf AB, Ehrmann C, Buck FM. et al. Quantitative Shear-Wave US Elastography of the Supraspinatus Muscle: Reliability of the Method and Relation to Tendon Integrity and Muscle Quality. Radiology 2016; 278: 465-474
  • 328 Botar-Jid C, Damian L, Dudea SM. et al. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason 2010; 12: 120-126
  • 329 Drakonaki E. Ultrasound elastography for imaging tendons and muscles. J Ultrason 2012; 12: 214-225
  • 330 Taljanovic MS, Gimber LH, Becker GW. et al. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics 2017; 37: 855-870
  • 331 Akagi R, Kusama S. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter. Ultrasound Med Biol 2015; 41: 2266-2271
  • 332 Andonian P, Viallon M, Le Goff C. et al. Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon. PLoS One 2016; 11: e0161855
  • 333 Brandenburg JE, Eby SF, Song P. et al. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev Med Child Neurol 2016; 58: 1288-1294
  • 334 Dubois G, Kheireddine W, Vergari C. et al. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound Med Biol 2015; 41: 2284-2291
  • 335 Eby SF, Cloud BA, Brandenburg JE. et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin Biomech (Bristol, Avon) 2015; 30: 22-27
  • 336 Koo TK, Guo JY, Cohen JH. et al. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography. Clin Biomech (Bristol, Avon) 2014; 29: 33-39
  • 337 Nakamura M, Hasegawa S, Umegaki H. et al. The difference in passive tension applied to the muscles composing the hamstrings – Comparison among muscles using ultrasound shear wave elastography. Man Ther 2016; 24: 1-6
  • 338 Du LJ, He W, Cheng LG. et al. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson’s disease: a primary observation. Clin Imaging 2016; 40: 1075-1080
  • 339 Eby S, Zhao H, Song P. et al. Quantitative Evaluation of Passive Muscle Stiffness in Chronic Stroke. Am J Phys Med Rehabil 2016; 95: 899-910
  • 340 Lee SS, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-impaired muscle. Clin Biomech (Bristol, Avon) 2015; 30: 269-275
  • 341 Lacourpaille L, Hug F, Guével A. et al. Non-invasive assessment of muscle stiffness in patients with Duchenne muscular dystrophy. Muscle Nerve 2015; 51: 284-286
  • 342 Illomei G, Spinicci G, Locci E. et al. Muscle elastography: a new imaging technique for multiple sclerosis spasticity measurement. Neurol Sci 2017; 38: 433-439
  • 343 Song Y, Lee S, Yoo DH. et al. Strain sonoelastography of inflammatory myopathies: comparison with clinical examination, magnetic resonance imaging and pathologic findings. Br J Radiol 2016; 89: 20160283
  • 344 Wu CH, Chen WS, Wang TG. Elasticity of the Coracohumeral Ligament in Patients with Adhesive Capsulitis of the Shoulder. Radiology 2016; 278: 458-464
  • 345 Miyamoto H, Miura T, Morizaki Y. et al. Comparative study on the stiffness of transverse carpal ligament between normal subjects and carpal tunnel syndrome patients. Hand Surg 2013; 18: 209-214
  • 346 Lee SY, Park HJ, Kwag HJ. et al. Ultrasound elastography in the early diagnosis of plantar fasciitis. Clin Imaging 2014; 38: 715-718
  • 347 Ríos-Díaz J, Martínez-Payá JJ, del Baño-Aledo ME. et al. Sonoelastography of Plantar Fascia: Reproducibility and Pattern Description in Healthy Subjects and Symptomatic Subjects. Ultrasound Med Biol 2015; 41: 2605-2613
  • 348 Sconfienza LM, Silvestri E, Orlandi D. et al. Real-time sonoelastography of the plantar fascia: comparison between patients with plantar fasciitis and healthy control subjects. Radiology 2013; 267: 195-200
  • 349 Wu CH, Chen WS, Wang TG. Plantar fascia softening in plantar fasciitis with normal B-mode sonography. Skeletal Radiol 2015; 44: 1603-1607
  • 350 Miyamoto H, Siedentopf C, Kastlunger M. et al. Intracarpal tunnel contents: evaluation of the effects of corticosteroid injection with sonoelastography. Radiology 2014; 270: 809-815
  • 351 Yoshii Y, Tung WL, Ishii T. Measurement of Median Nerve Strain and Applied Pressure for the Diagnosis of Carpal Tunnel Syndrome. Ultrasound Med Biol 2017; 43: 1205-1209
  • 352 Klauser AS, Miyamoto H, Martinoli C. et al. Sonoelastographic Findings of Carpal Tunnel Injection. Ultraschall in Med 2015; 36: 618-622
  • 353 Yoshii Y, Tung WL, Ishii T. Strain and Morphological Changes of Median Nerve After Carpal Tunnel Release. J Ultrasound Med 2017; 36: 1153-1159
  • 354 Miyamoto H, Halpern EJ, Kastlunger M. et al. Carpal tunnel syndrome: diagnosis by means of median nerve elasticity--improved diagnostic accuracy of US with sonoelastography. Radiology 2014; 270: 481-486
  • 355 Tatar IG, Kurt A, Yavasoglu NG. et al. Carpal tunnel syndrome: elastosonographic strain ratio and cross-sectional area evaluation for the diagnosis and disease severity. Med Ultrason 2016; 18: 305-311
  • 356 Zhang C, Li M, Jiang J. et al. Diagnostic Value of Virtual Touch Tissue Imaging Quantification for Evaluating Median Nerve Stiffness in Carpal Tunnel Syndrome. J Ultrasound Med 2017; 36: 1783-1791
  • 357 Kantarci F, Ustabasioglu FE, Delil S. et al. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol 2014; 24: 434-440
  • 358 Dikici AS, Ustabasioglu FE, Delil S. et al. Evaluation of the Tibial Nerve with Shear-Wave Elastography: A Potential Sonographic Method for the Diagnosis of Diabetic Peripheral Neuropathy. Radiology 2017; 282: 494-501
  • 359 Ishibashi F, Taniguchi M, Kojima R. et al. Elasticity of the tibial nerve assessed by sonoelastography was reduced before the development of neuropathy and further deterioration associated with the severity of neuropathy in patients with type 2 diabetes. J Diabetes Investig 2016; 7: 404-412
  • 360 Klauser AS, Miyamoto H, Bellmann-Weiler R. et al. Sonoelastography: musculoskeletal applications. Radiology 2014; 272: 622-633
  • 361 Greening J, Dilley A. Posture-induced changes in peripheral nerve stiffness measured by ultrasound shear-wave elastography. Muscle Nerve 2017; 55: 213-222
  • 362 Klauser AS, Faschingbauer R, Jaschke WR. Is sonoelastography of value in assessing tendons?. Semin Musculoskelet Radiol 2010; 14: 323-333
  • 363 Kot BC, Zhang ZJ, Lee AW. et al. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One 2012; 7: e44348
  • 364 Domenichini R, Pialat JB, Podda A. et al. Ultrasound elastography in tendon pathology: state of the art. Skeletal Radiol 2017; 46: 1643-1655
  • 365 Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012; 85: 1435-1445
  • 366 Alfuraih AM, O’Connor P, Hensor E. et al. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: Variables affecting reliability of SWE. J Clin Ultrasound 2018; 46: 108-115
  • 367 Carmignani L, Gadda F, Gazzano G. et al. High incidence of benign testicular neoplasms diagnosed by ultrasound. J Urol 2003; 170: 1783-1786
  • 368 Shah A, Lung PF, Clarke JL. et al. Re: New ultrasound techniques for imaging of the indeterminate testicular lesion may avoid surgery completely. Clin Radiol 2010; 65: 496-497
  • 369 Sidhu PS. Multiparametric Ultrasound (MPUS) Imaging: Terminology Describing the Many Aspects of Ultrasonography. Ultraschall in Med 2015; 36: 315-317
  • 370 Huang DY, Sidhu PS. Focal testicular lesions: colour Doppler ultrasound, contrast-enhanced ultrasound and tissue elastography as adjuvants to the diagnosis. Br J Radiol 2012; 85 Spec No 1: S41-S53
  • 371 Pozza C, Gianfrilli D, Fattorini G. et al. Diagnostic value of qualitative and strain ratio elastography in the differential diagnosis of non-palpable testicular lesions. Andrology 2016; 4: 1193-1203
  • 372 Goddi A, Sacchi A, Magistretti G. et al. Real-time tissue elastography for testicular lesion assessment. Eur Radiol 2012; 22: 721-730
  • 373 Auer T, De Zordo T, Dejaco C. et al. Value of Multiparametric US in the Assessment of Intratesticular Lesions. Radiology 2017; 285: 640-649
  • 374 Aigner F, De Zordo T, Pallwein-Prettner L. et al. Real-time sonoelastography for the evaluation of testicular lesions. Radiology 2012; 263: 584-589
  • 375 Schröder C, Lock G, Schmidt C. et al. Real-Time Elastography and Contrast-Enhanced Ultrasonography in the Evaluation of Testicular Masses: A Comparative Prospective Study. Ultrasound Med Biol 2016; 42: 1807-1815
  • 376 Marsaud A, Durand M, Raffaelli C. et al. Elastography shows promise in testicular cancer detection. Prog Urol 2015; 25: 75-82
  • 377 Grasso M, Blanco S, Raber M. et al. Elasto-sonography of the testis: preliminary experience. Arch Ital Urol Androl 2010; 82: 160-163
  • 378 Lock G, Schröder C, Schmidt C. et al. Contrast-enhanced ultrasound and real-time elastography for the diagnosis of benign Leydig cell tumours of the testis – a single center report on 13 cases. Ultraschall in Med 2014; 35: 534-539
  • 379 Jedrzejewski G, Ben-Skowronek I, Wozniak MM. et al. Testicular adrenal rest tumours in boys with congenital adrenal hyperplasia: 3D US and elastography--do we get more information for diagnosis and monitoring?. J Pediatr Urol 2013; 9: 1032-1037
  • 380 Bernardo S, Konstantatou E, Huang DY. et al. Multiparametric sonographic imaging of a capillary hemangioma of the testis: appearances on gray-scale, color Doppler, contrast-enhanced ultrasound and strain elastography. J Ultrasound 2016; 19: 35-39
  • 381 Patel K, Sellars ME, Clarke JL. et al. Features of testicular epidermoid cysts on contrast-enhanced sonography and real-time tissue elastography. J Ultrasound Med 2012; 31: 115-122
  • 382 Patel KV, Huang DY, Sidhu PS. Metachronous bilateral segmental testicular infarction: multi-parametric ultrasound imaging with grey-scale ultrasound, Doppler ultrasound, contrast-enhanced ultrasound (CEUS) and real-time tissue elastography (RTE). J Ultrasound 2014; 17: 233-238
  • 383 Yusuf G, Konstantatou E, Sellars ME. et al. Multiparametric Sonography of Testicular Hematomas: Features on Grayscale, Color Doppler, and Contrast-Enhanced Sonography and Strain Elastography. J Ultrasound Med 2015; 34: 1319-1328
  • 384 Fang C, Konstantatou E, Romanos O. et al. Reproducibility of 2-Dimensional Shear Wave Elastography Assessment of the Liver: A Direct Comparison With Point Shear Wave Elastography in Healthy Volunteers. J Ultrasound Med 2017; 36: 1563-1569
  • 385 Rafailidis V, Robbie H, Konstantatou E. et al. Sonographic imaging of extra-testicular focal lesions: comparison of grey-scale, colour Doppler and contrast-enhanced ultrasound. Ultrasound 2016; 24: 23-33
  • 386 Pedersen MR, Møller H, Osther PJS. et al. Comparison of Tissue Stiffness Using Shear Wave Elastography in Men with Normal Testicular Tissue, Testicular Microlithiasis and Testicular Cancer. Ultrasound Int Open 2017; 3: E150-E155
  • 387 Rocher L, Criton A, Gennisson JL. et al. Testicular Shear Wave Elastography in Normal and Infertile Men: A Prospective Study on 601 Patients. Ultrasound Med Biol 2017; 43: 782-789
  • 388 Ucar AK, Alis D, Samanci C. et al. A preliminary study of shear wave elastography for the evaluation of unilateral palpable undescended testes. Eur J Radiol 2017; 86: 248-251
  • 389 Dikici AS, Er ME, Alis D. et al. Is There Any Difference Between Seminomas and Nonseminomatous Germ Cell Tumours on Shear Wave Elastography? A Preliminary Study. J Ultrasound Med 2016; 35: 2575-2580
  • 390 Rocher L, Glas L, Bellin MF. et al. Burned-Out Testis Tumours in Asymptomatic Infertile Men: Multiparametric Sonography and MRI Findings. J Ultrasound Med 2017; 36: 821-831
  • 391 Trottmann M, Rübenthaler J, Marcon J. et al. Differences of standard values of Supersonic shear imaging and ARFI technique – in vivo study of testicular tissue. Clin Hemorheol Microcirc 2016; 64: 729-733
  • 392 De Zordo T, Stronegger D, Pallwein-Prettner L. et al. Multiparametric ultrasonography of the testicles. Nat Rev Urol 2013; 10: 135-148
  • 393 D’Anastasi M, Schneevoigt BS, Trottmann M. et al. Acoustic radiation force impulse imaging of the testes: a preliminary experience. Clin Hemorheol Microcirc 2011; 49: 105-114
  • 394 Trottmann M, Marcon J, D’Anastasi M. et al. Shear-wave elastography of the testis in the healthy man – determination of standard values. Clin Hemorheol Microcirc 2016; 62: 273-281
  • 395 Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis, thrombosis, and vascular biology 2005; 25: 932-943
  • 396 Mahmood B, Ewertsen C, Carlsen J. et al. Ultrasound Vascular Elastography as a Tool for Assessing Atherosclerotic Plaques – A Systematic Literature Review. Ultrasound international open 2016; 2: E106-E112
  • 397 de Korte CL, Pasterkamp G, van der Steen AF. et al. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000; 102: 617-623
  • 398 de Korte CL, van der Steen AF. Intravascular ultrasound elastography: an overview. Ultrasonics 2002; 40: 859-865
  • 399 Majdouline Y, Ohayon J, Keshavarz-Motamed Z. et al. Endovascular shear strain elastography for the detection and characterization of the severity of atherosclerotic plaques: in vitro validation and in vivo evaluation. Ultrasound in medicine & biology 2014; 40: 890-903
  • 400 Schaar JA, De Korte CL, Mastik F. et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation 2003; 108: 2636-2641
  • 401 Dahl JJ, Dumont DM, Allen JD. et al. Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study. Ultrasound in medicine & biology 2009; 35: 707-716
  • 402 Czernuszewicz TJ, Homeister JW, Caughey MC. et al. Non-invasive in vivo characterization of human carotid plaques with acoustic radiation force impulse ultrasound: comparison with histology after endarterectomy. Ultrasound in medicine & biology 2015; 41: 685-697
  • 403 Meshram NH, Varghese T, Mitchell CC. et al. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition. Physics in medicine and biology 2017; 62: 6341-6360
  • 404 Emelianov SY, Chen X, O’Donnell M. et al. Triplex ultrasound: elasticity imaging to age deep venous thrombosis. Ultrasound in medicine & biology 2002; 28: 757-767
  • 405 Xie H, Kim K, Aglyamov SR. et al. Staging deep venous thrombosis using ultrasound elasticity imaging: animal model. Ultrasound in medicine & biology 2004; 30: 1385-1396
  • 406 Rubin JM, Xie H, Kim K. et al. Sonographic elasticity imaging of acute and chronic deep venous thrombosis in humans. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine 2006; 25: 1179-1186
  • 407 Takimura H, Hirano K, Muramatsu T. et al. Vascular elastography: a novel method to characterize occluded lower limb arteries prior to endovascular therapy. Journal of endovascular therapy: an official journal of the International Society of Endovascular Specialists 2014; 21: 654-661
  • 408 Yi X, Wei X, Wang Y. et al. Role of real-time elastography in assessing the stage of thrombus. International angiology: a journal of the International Union of Angiology 2017; 36: 59-63
  • 409 Dharmarajah B, Sounderajah V, Rowland SP. et al. Aging techniques for deep vein thrombosis: a systematic review. Phlebology 2015; 30: 77-84
  • 410 Aslan A, Barutca H, Ayaz E. et al. Is real-time elastography helpful to differentiate acute from subacute deep venous thrombosis? A preliminary study. Journal of clinical ultrasound: JCU 2018; 46: 116-121
  • 411 Su Y, Liu W, Wang D. et al. Evaluation of abdominal aortic elasticity by strain rate imaging in patients with type 2 diabetes mellitus. Journal of clinical ultrasound: JCU 2014; 42: 475-480
  • 412 Zheng XZ, Yang B, Wu J. A comparison of the approaches to assess the abdominal aortic stiffness using M-mode ultrasonography, tissue tracking and strain rate imaging. JNMA: journal of the Nepal Medical Association 2013; 52: 500-504
  • 413 Korshunov VA, Wang H, Ahmed R. et al. Model-based vascular elastography improves the detection of flow-induced carotid artery remodeling in mice. Scientific reports 2017; 7: 12081
  • 414 Ribbers H, Lopata RG, Holewijn S. et al. Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound in medicine & biology 2007; 33: 530-540
  • 415 Couade M, Pernot M, Prada C. et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound in medicine & biology 2010; 36: 1662-1676
  • 416 Widman E, Maksuti E, Amador C. et al. Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region. Ultrasound in medicine & biology 2016; 42: 2423-2435
  • 417 Guo Y, Wang Y, Chang EJ. et al. Multidirectional Estimation of Arterial Stiffness Using Vascular Guided Wave Imaging with Geometry Correction. Ultrasound Med Biol 2018; 44: 884-896
  • 418 Maksuti E, Bini F, Fiorentini S. et al. Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study. Physics in medicine and biology 2017; 62: 2694-2718
  • 419 Maksuti E, Widman E, Larsson D. et al. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing. Ultrasound in medicine & biology 2016; 42: 308-321
  • 420 Widman E, Maksuti E, Larsson D. et al. Shear wave elastography plaque characterization with mechanical testing validation: a phantom study. Physics in medicine and biology 2015; 60: 3151-3174
  • 421 Ramnarine KV, Garrard JW, Dexter K. et al. Shear wave elastography assessment of carotid plaque stiffness: in vitro reproducibility study. Ultrasound in medicine & biology 2014; 40: 200-209
  • 422 Ramnarine KV, Garrard JW, Kanber B. et al. Shear wave elastography imaging of carotid plaques: feasible, reproducible and of clinical potential. Cardiovascular ultrasound 2014; 12: 49
  • 423 Garrard JW, Ramnarine K. Shear-wave elastography in carotid plaques: comparison with grayscale median and histological assessment in an interesting case. Ultraschall in der Medizin 2014; 35: 1-3
  • 424 Lei Z, Qiang Y, Tianning P. et al. Quantitative assessment of carotid atherosclerotic plaque: Initial clinical results using ShearWave™ Elastography. Int J Clin Exp Med 2016; 9: 9347-9355
  • 425 Lou Z, Yang J, Tang L. et al. Shear Wave Elastography Imaging for the Features of Symptomatic Carotid Plaques: A Feasibility Study. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine 2017; 36: 1213-1223
  • 426 Garrard JW, Ummur P, Nduwayo S. et al. Shear Wave Elastography May Be Superior to Greyscale Median for the Identification of Carotid Plaque Vulnerability: A Comparison with Histology. Ultraschall in der Medizin 2015; 36: 386-390
  • 427 Couade M, Pernot M, Messas E. et al. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE transactions on medical imaging 2011; 30: 295-305
  • 428 Pernot M, Couade M, Mateo P. et al. Real-time assessment of myocardial contractility using shear wave imaging. Journal of the American College of Cardiology 2011; 58: 65-72
  • 429 Strachinaru M, Bosch JG, van Dalen BM. et al. Cardiac Shear Wave Elastography Using a Clinical Ultrasound System. Ultrasound in medicine & biology 2017; 43: 1596-1606
  • 430 Bernal M, Gennisson JL, Flaud P. et al. Shear wave elastography quantification of blood elasticity during clotting. Ultrasound in medicine & biology 2012; 38: 2218-2228
  • 431 Mfoumou E, Tripette J, Blostein M. et al. Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis. Thrombosis research 2014; 133: 265-271
  • 432 Kobayashi Y, Omichi K, Kawaguchi Y. et al. Intraoperative real-time tissue elastography during laparoscopic hepatectomy. HPB (Oxford) 2018; 20: 93-99
  • 433 Platz Batista da Silva N, Schauer M, Hornung M. et al. Intrasurgical dignity assessment of hepatic tumours using semi-quantitative strain elastography and contrast-enhanced ultrasound for optimisation of liver tumour surgery. Clin Hemorheol Microcirc 2016; 64: 735-745
  • 434 Jung EM, Platz Batista da Silva N, Jung W. et al. Is Strain Elastography (IO-SE) Sufficient for Characterization of Liver Lesions before Surgical Resection--Or Is Contrast Enhanced Ultrasound (CEUS) Necessary?. PLoS One 2015; 10: e0123737
  • 435 Kawaguchi Y, Tanaka N, Nagai M. et al. Usefulness of Intraoperative Real-Time Tissue Elastography During Laparoscopic Hepatectomy. J Am Coll Surg 2015; 221: e103-e111
  • 436 Sastry R, Bi WL, Pieper S. et al. Applications of Ultrasound in the Resection of Brain Tumours. J Neuroimaging 2017; 27: 5-15
  • 437 Chauvet D, Imbault M, Capelle L. et al. In Vivo Measurement of Brain Tumour Elasticity Using Intraoperative Shear Wave Elastography. Ultraschall in Med 2016; 37: 584-590
  • 438 Chan HW, Pressler R, Uff C. et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative ShearWave elastography. Epilepsia 2014; 55: e30-e33
  • 439 Selbekk T, Brekken R, Indergaard M. et al. Comparison of contrast in brightness mode and strain ultrasonography of glial brain tumours. BMC Med Imaging 2012; 12: 11
  • 440 Ji S, Hartov A, Roberts D. et al. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med Image Anal 2009; 13: 744-756
  • 441 Joldes GR, Wittek A, Couton M. et al. Real-time prediction of brain shift using nonlinear finite element algorithms. Med Image Comput Comput Assist Interv 2009; 12: 300-307
  • 442 Carter TJ, Sermesant M, Cash DM. et al. Application of soft tissue modelling to image-guided surgery. Med Eng Phys 2005; 27: 893-909
  • 443 Scholz M, Noack V, Pechlivanis I. et al. Vibrography during tumour neurosurgery. J Ultrasound Med 2005; 24: 985-992
  • 444 Fleming IN, Kut C, Macura KJ. et al. Ultrasound elastography as a tool for imaging guidance during prostatectomy: initial experience. Med Sci Monit 2012; 18: CR635-CR642
  • 445 Uramoto H, Nakajima Y, Ohtaki K. et al. Intraoperative ultrasound elastography has little diagnostic benefit for deeper tumours of the lung. Eur J Cardiothorac Surg 2016; 49: 1538-1539
  • 446 Parekattil S, Yeung LL, Su LM. Intraoperative tissue characterization and imaging. Urol Clin North Am 2009; 36: 213-221, ix