Pneumologie 2019; 73(07): 399-406
DOI: 10.1055/a-0853-0253
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Lungenfunktion, Lung Clearance Index und bronchiale Entzündung bei Kindern und Jugendlichen mit Bronchiolitis obliterans

Lung Function, Lung Clearance Index und Bronchial Inflammation in Children and Adolescents with Bronchiolitis obliterans
N. Belachew
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
,
S. Jerkic
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
,
F. Michel
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
,
R. Schubert
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
,
S. Zielen
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
,
M. Rosewich
Klinik für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose
› Author Affiliations
Further Information

Publication History

eingereicht 20 November 2018

akzeptiert nach Revision 06 February 2019

Publication Date:
20 March 2019 (online)

Zusammenfassung

Einleitung Die Bronchiolitis obliterans (BO) ist eine sehr seltene, chronische Lungenerkrankung, die vereinzelt nach schweren Atemwegsinfektionen oder als Folge von Stammzell- und Lungentransplantation auftritt. Ziel der Arbeit war es, die Lungenfunktion und die bronchiale Entzündung bei BO-Patienten im Jugend- und Kindesalter zu untersuchen. Zudem sollte das Potenzial des LCI in der Diagnostik dieser Patienten untersucht werden.

Methoden Es wurden 16 BO-Patienten (Alter: Median 16,7; 9,6 – 25,3 Jahre) und 17 gesunde Probanden (Alter: Median 16,6; 7,6 – 25,0 Jahre) untersucht. Neben der Untersuchung der Lungenfunktion (FVC, FEV1, MEF25, RV und RV/TLC) mittels Bodyplethysmografie erfolgte eine Reversibilitätstestung nach Gabe von 400 µg Salbutamol. Die Bestimmung des LCI erfolgte mittels Multiple Breath Washout (MBW)-Methode. Zusätzlich wurde die Zellverteilung und das Zytokinprofil (IL-1ß, IL-6, IL-8, TNF-α) mittels Cytometric Bead Array (CBA) im induzierten Sputum analysiert.

Ergebnisse FVC, FEV1 und MEF25 der BO-Patienten waren signifikant niedriger, das RV und die RV/TLC jedoch signifikant erhöht im Vergleich zur Kontrollgruppe. Eine bronchiale Reversibilität zeigte sich bei 3 Patienten. Der LCI war bei den BO-Patienten gegenüber der Kontrollgruppe signifikant erhöht (Median 10,24 vs. 7,1) und korrelierte signifikant mit dem MEF25 (p < 0,0001). Im induzierten Sputum fand sich eine signifikante Erhöhung der Gesamtzellzahl, der neutrophilen Granulozyten sowie von IL-6 und IL-8 (p < 0.01).

Schlussfolgerung Die Lungenfunktion ist bei Kindern und Jugendlichen mit BO stark eingeschränkt. Zudem erwies sich der LCI als sensitiver und reproduzierbarer Marker zur Beurteilung der obstruktiven Beeinträchtigung der kleinen Atemwege. Im induzierten Sputum ist eine von Neutrophilen dominierte bronchiale Entzündung nachweisbar.

Abstract

Introduction Bronchiolitis obliterans (BO) is a rare and severe pulmonary disease which can occur due to airway infection or as a result of stem cell or lung transplantation. Our goal was to study the lung function and airway inflammation among BO patients. Furthermore, we examined the potential of the lung clearance index (LCI) for BO diagnostics among that group.

Methods 16 BO patients (age: 16.7; 9.6 – 25.3 years) and 17 healthy controls (age: 16.6; 7.6 – 25.0 years) participated in the study. Lung function parameters (FVC, FEV1, MEF25, RV und RV/TLC) as well as airway reversibility after administration of 400 µg salbutamol was investigated. The lung clearance index was determined using the multiple-breath washout method (MBW). Additionally, induced sputum was analyzed for cytology and cytokine levels (IL-1ß, IL-6, IL-8, TNF-α) using the cytometric bead array (CBA).

Results BO patients had significantly lower FVC, FEV1 and MEF25 but increased RV and RV/TLC. Airway reversibility was observed in 3 patients. The LCI was significantly higher among BO patients compared to the healthy control group (median 10.24 vs. 7.1). Apart from a massive airway inflammation indicated by elevated numbers of total cells and neutrophils, the CBA analysis showed increased levels of IL-6 and IL-8 (p < 0.01).

Discussion In BO patients, lung function in childhood and adolescence is severely impaired. Furthermore, we were able to demonstrate the sensitivity and reproducibility of LCI and its value for the evaluation of small airway obstruction. In induced sputum, a neutrophil-dominated airway inflammation is detectable.

 
  • Literatur

  • 1 Barker AF, Bergeron A, Rom WN. et al. Obliterative bronchiolitis. N Engl J Med 2014; 370: 1820-1828
  • 2 Epler GR, Colby TV, McLoud TC. et al. Bronchiolitis obliterans organizing pneumonia. N Engl J Med 1985; 312: 152-158
  • 3 Alasaly K, Muller N, Ostrow DN. et al. Cryptogenic organizing pneumonia. A report of 25 cases and a review of the literature. Medicine (Baltimore) 1995; 74: 201-211
  • 4 Schlesinger C, Meyer C, Veeraraghavan S. et al. Constrictive (obliterative) bronchiolitis: diagnosis, etiology, and a critical review of the literature. Ann Diagn Pathol 1998; 2: 321-334
  • 5 Kurland G, Michelson P. Bronchiolitis obliterans in children. Pediatr Pulmonol 2005; 39: 193-208
  • 6 Lange W. Über eine eigentümliche Erkrankung der kleinen Bronchien und Bronchiolen. Arch Klin. Med 1901; 70: 342-364
  • 7 Hardy K, Schidlow D, Zaeri N. Obliterative bronchiolitis in children. Chest 1988; 93: 460-466
  • 8 Smith K, Fan L. Insights into post-infectious bronchiolitis obliterans in children. Thorax 2006; 61: 462-463
  • 9 Rosewich M, Zissler UM, Kheiri T. et al. Bronchiale Entzündung bei Kinder und Jugendlichen mit Bronchiolitis obliterans. Cytokine 2015; 73: 156-162
  • 10 Eckrich J, Herrmann E, Voss S. et al. Short-Term Variation of Lung Function and Airway Inflammation in Children and Adolescents with Bronchiolitis Obliterans. Lung 2016; 194: 571-579
  • 11 Rosewich M, Eckrich J, Zielen S. Long-term lung function in postinfectious bronchiolitis obliterans. Thorax 2015; 70: 792
  • 12 Moonnumakal S, Fan L. Bronchiolitis obliterans in children. Curr Opin Pediatr 2008; 20: 272-278
  • 13 Mauad T, Dolhnikoff M. Histology of childhood bronchiolitis obliterans. Ped Pulmonol 2002; 33: 466-474
  • 14 Estenne M, Maurer JR, Boehler A. et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002; 21: 297-310
  • 15 Koh Y, Jung D, Koh JY. et al. Bronchoalveolar cellularity and interleukin-8 levels in measles bronchiolitis obliterans. Chest 2007; 131: 1454-1460
  • 16 Pizzichini E, Pizzichini MM, Efthimiadisi A. et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 1996; 154: 308-317
  • 17 Schulze J, Voss S, Zissler U. et al. Airway responses and inflammation in subjects with asthma after four days of repeated high-single-dose allergen challenge. Respir Res 2012; 13: 78
  • 18 Koc-Günel S, Schubert R, Zielen S. et al. Cell distribution and cytokine levels in induced sputum from healthy subjects and patients with asthma after using different nebulizer techniques. BMC Pulm Med 2018; 18: 115
  • 19 Eickmeier O, Huebner M, Herrmann E. et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 2010; 50: 152-157
  • 20 Cazzato S, Poletti V, Bernardi F. et al. Airway inflammation and lung function decline in childhood post-infectious bronchiolitis obliterans. Pediatr Pulmonol 2008; 43: 381-390
  • 21 Aguerre V, Castaños C, Pena HG. et al. Postinfectious bronchiolitis obliterans in children: clinical and pulmonary function findings. Pediatr Pulmonol 2010; 45: 1180-1185
  • 22 Hansen JE, Sun XG, Wasserman K. Spirometric criteria for airway obstruction: Use percentage of FEV1/FVC ratio below the fifth percentile, not < 70 %. Chest 2007; 131: 349-355
  • 23 Hansell DM, Rubens MB, Padley SP. et al. Obliterative bronchiolitis: individual CT signs of small airways disease and functional correlation. Radiology 1997; 203: 721-726
  • 24 Kennedy VE, Todd JL, Palmer SM. Bronchoalveolar lavage as a tool to predict, diagnose and understand bronchiolitis obliterans syndrome. Am J Transplant 2013; 13: 552-561
  • 25 Tiddens HA, Donaldson SH, Rosenfeld M. et al. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively?. Pediatr Pulmonol 2010; 45: 107-117
  • 26 McFadden Jr E, Linden D. A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med 1972; 52: 725-737
  • 27 Teper A, Kofman C, Maffey AF. et al. Lung function in infants with chronic pulmonary disease after severe adenoviral illness. J Pediatr 1999; 134: 730-733
  • 28 Wyatt SE, Nunn P, Hows JM. et al. Airway obstruction associated with graft versus host disease after bone marrow transplantation. Thorax 1984; 39: 887-894
  • 29 Teixeira M, Rodrigues J, Leone C. et al. Acute bronchodilator responsiveness to tiotropium in postinfectious bronchiolitis obliterans in children. Chest 2013; 144: 974-980
  • 30 Elssner A, Vogelmeier C. The role of neutrophils in the pathogenesis of obliterative bronchiolitis after lung transplantation. Transpl Infect Dis 2001; 3: 168-176
  • 31 Scholma J, Slebos DJ, Boezen HM. et al. Eosinophilic granulocytes and interleukin-6 level in bronchoalveolar lavage fluid are associated with the development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med 2000; 162: 2221-2225
  • 32 Devouassoux G, Drouet C, Pin I. et al. Alveolar neutrophilia is a predictor for the bronchiolitis obliterans syndrome, and increases with degree of severity. Transpl Immunol 2002; 10: 303-310
  • 33 Pease J, Sabroe I. The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med 2002; 1: 19-25
  • 34 Govindaraju V, Michoud M, Al-Chalabi M. et al. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 2006; 291: C957-965
  • 35 Berube J, Bourdon C, Yao Y. et al. Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells. Cell Signal 2009; 21: 448-456
  • 36 Horsley A. Lung clearance index in the assessment of airways disease. Respir Med 2009; 103: 793-799
  • 37 Lum S, Gustafsson P, Ljungberg H. et al. Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax 2007; 62: 341-347
  • 38 Horsley AR, Gustafsson PM, Macleod KA. et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax 2008; 63: 135-140
  • 39 Gustafsson P, Aurora P, Lindblad A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J 2003; 22: 972-979
  • 40 Aurora P, Gustafsson P, Bush A. et al. Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 2004; 59: 1068-1073
  • 41 Aurora P, Bush A, Gustafsson P. et al. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med 2005; 171: 249-256
  • 42 Schaedel C, de Monestrol I, Hjelte L. et al. Predictors of deterioration of lung function in cystic fibrosis. Ped Pulmonol 2002; 33: 483-491
  • 43 Gustafsson P, De Jong P, Tiddens HA. et al. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax 2008; 63: 129-134
  • 44 Macklem P, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. Appl Physiol 1967; 22: 395-401
  • 45 Brody A, Klein J, Molina PL. et al. High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 2004; 145: 32-38
  • 46 Timonen KL, Randell JT, Salonen RO. et al. Short-term variations in oscillatory and spirometric lung function indices among school children. Eur Respir J 1997; 10: 82-87
  • 47 Fuchs S, Gappa M. Lung clearance index: clinical and research applications in children. Paediatr Respir Rev 2011; 12: 264-270
  • 48 Hankinson J, Stocks J, Peslin R. Reproducibility of lung volume measurements. Eur Respir J 2003; 22: 972-979 1998; 11: 787 – 790
  • 49 Kraemer R, Blum A, Schibler A. et al. Ventilation inhomogeneities in relation to standard lung function in patients with cystic fibrosis. Am J Respir Crit Care Med 2005; 171: 371-378
  • 50 Kraemer R, Delosea N, Ballinari P. et al. Effect of allergic bronchopulmonary aspergillosis on lung function in children with cystic fibrosis. Am J Respir Crit Care Med 2006; 174: 1211-1220
  • 51 Lum S, Stocks J, Stanojevic S. et al. Age and height dependence of lung clearance index and functional residual capacity. Eur Respir J 2013; 41: 1371-1377
  • 52 Aurora P, Kozlowska W, Stocks J. Gas mixing efficiency from birth to adulthood measured by multiple-breath washout. Respir Physiol Neurobiol 2005; 148: 125-139
  • 53 Robinson P, Latzin P, Verbanck S. et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur Respir J 2013; 41: 507-522
  • 54 Wanger J, Clausen JL, Coates A. et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26: 511-522
  • 55 Mallol J, Aguirre V, Espinosa V. Increased oxidative stress in children with post infectious Bronchiolitis Obliterans. Allergol Immunopathol (Madr) 2011; 39: 253-258
  • 56 Madill J, Aghdassi E, Arendt BM. et al. Oxidative stress and nutritional intakes in lung patients with bronchiolitis obliterans syndrome. Transplant Proc 2009; 41: 3838-3844
  • 57 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracelluar traps kill bacteria. Science 2004; 303: 1532-1535
  • 58 Cortjens B, van Woensel JBM, Bem RA. Neutrophil Extracellular Traps in Respiratory Disease: Guided anti-microbial traps or toxic webs?. Paediatr Respir Rev 2017; 21: 54-61
  • 59 Marcos V, Zhou-Suckow Z, Onder Yildirim A. et al. Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction. Mediators Inflamm 2015; DOI: 10.1155/2015/408935.
  • 60 Grabcanovic-Musija F, Obermayer A, Stoiber W. et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 2015; 16: 59
  • 61 Cheng OZ, Palaniyar N. NET balancing: A problem in inflammatory lung diseases. Front Immunol 2013; 4: 1