Subscribe to RSS
DOI: 10.1055/a-0854-8302
Effects of Pre- and Post-Exercise Cold-Water Immersion Therapy on Passive Muscle Stiffness
Einfluss einer Kaltwasserimmersionstherapie auf die passive MuskelsteifigkeitPublication History
Publication Date:
18 July 2019 (online)
Abstract
Background Cold-water immersion (CWI) has become a popular preventive, regenerative and performance-enhancing intervention in various sports. However, its effects on soft tissue, including changes of intramuscular stiffness, are poorly understood. The purpose of this study was to investigate the effect of CWI on muscle stiffness.
Patients/Material and Methods Thirty healthy participants were included and divided into the three following groups (n = 10): 1) post-ESU group: exercise and CWI (post-exercise set-up); 2) control group: exercise without CWI (control condition); 3) pre-ESU group: CWI alone (pre-exercise set-up). Acoustic radiation force impulse (ARFI) elastography was conducted to assess tissue stiffness (shear wave velocity, SWV). Values obtained at resting conditions (baseline, t0) were compared to values post-exercise (t1, for post-ESU group and control group), post-CWI (t2, for post-ESU group and pre-ESU group; rest for control group) and to 60-min follow-up time (t3, for all groups). Data were assessed in superficial and deep muscle tissue (rectus femoris muscle, RF; vastus intermedius muscle, VI).
Results For the post-ESU group (CWI post-exercise), there was no significant difference between the time points of measurements: exercise (t1: RF: 1.63 m/s; VI: 1.54 m/s), CWI (t2: RF: 1.63 m/s; VI: 1.53 m/s) and at 60-min follow-up (t3: RF: 1.72 m/s; VI: 1.61 m/s). In the control group, a significant decrease of SWV was found between baseline conditions at t0 and post-exercise (t1) at VI (VI: 1.37 m/s; p = 0.004; RF: 1.59 m/s; p = 0.084). For t2 and t3, no further significant changes were detected. Regarding the pre-exercise set-up (pre-ESU group), a significant decrease in SWV from baseline to t2 in VI (1.60 m/s to 1.49 m/s; VI: p = 0.027) was found.
Conclusion This study shows varying influences of CWI on muscle stiffness. Overall, we did not detect any significant effects of CWI on muscle stiffness post-exercise. Muscle stiffness-related effects of CWI differ in the context of a pre- or post-exercise condition and have to be considered in the implementation of CWI to ensure its potential preventive and regenerative benefits.
Zusammenfassung
Hintergrund Die Kaltwasserimmersion (CWI) ist ein beliebtes präventives und regeneratives Therapieverfahren und hat sich in verschiedensten Sportarten etabliert. Die Effekte auf die Muskulatur sowie die Änderung der intramuskulären Gewebesteifigkeit sind jedoch ungeklärt. Ziel dieser Studie war es, den Einfluss einer Kaltwasserimmersionstherapie auf die Muskelsteifigkeit zu untersuchen.
Material und Methoden Insgesamt wurden 30 gesunde Athleten in 3 Gruppen (n = 10) aufgeteilt. 1) Post-ESU-Gruppe: Belastung und CWI; 2) Kontroll-Gruppe: Belastung ohne CWI; 3) Pre-ESU-Gruppe: CWI ohne Belastung. Die passive Muskelsteifigkeit wurde mittels Acoustic radiation force impulse (ARFI) Elasto-Sonografie anhand der Shear-Wave-Velocity (SWV) im M. rectus femoris (RF) und M. vastus intermedius (VI) bestimmt. Die Messwerte des Ausgangsniveaus (t0) wurden gruppenspezifisch mit den Werten nach der Belastung (t1, für Post-ESU-Gruppe und Kontroll-Gruppe) nach CWI (t2, für Post-ESU-Gruppe und Pre-ESU-Gruppe bzw. Kontrollzeit für Kontroll-Gruppe) und 60 min nach Intervention (t3, für alle Gruppen) verglichen.
Ergebnisse In der Post-ESU-Gruppe zeigte sich kein signifikanter Unterschied zwischen den Messzeitpunkten: Belastung (t1: RF: 1,63 m/s; VI: 1,54 m/s), CWI (t2: RF: 1,63 m/s; VI: 1,53 m/s;) und 60 min. nach Intervention (t3: RF: 1,72 m/s; VI: 1,61 m/s). In der Kontroll-Gruppe konnte eine signifikante Abnahme der SWV zwischen dem Ausgangsniveau t0 und t1 im VI beobachtet werden (VI: 1,37 m/s; p = 0,004) (RF: 1,59 m/s; p = 0,084). Zum Zeitpunkt t2 und t3 konnte keine weitere signifikante Änderung festgestellt werden. Eine signifikante Abnahme der SWV konnte in der Pre-ESU-Gruppe zwischen Ausgangsniveau (t0) und post-CWI (t2) im VI festgestellt werden (p = 0,027).
Schlussfolgerung Die vorliegende Studie zeigt unterschiedliche Einflüsse einer CWI auf die Muskelsteifigkeit. Insgesamt kann festgehalten werden, dass wir nach Belastung keinen signifikanten Effekt der CWI auf die Muskelsteife feststellen konnten. Die unterschiedlichen Effekte, abhängig vom Zustand vor oder nach Belastung, müssen bei der Durchführung bedacht werden, um einen möglichen präventiven und regenerativen Nutzen gewährleisten zu können.
-
References
- 1 Murray A, Cardinale M. Cold applications for recovery in adolescent athletes: a systematic review and meta analysis. Extrem Physiol Med 2015; 4: 17
- 2 Machado AF, Ferreira PH, Micheletti JK. et al. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports medicine (Auckland, NZ) 2016; 46: 503-514
- 3 Hotfiel TLC, Freiwald J, Hoppe M. et al. Delayed Onset Muscle Soreness (DOMS): Part II: Advances in Treatment and Prevention Sportverletzung Sportschaden 2018, Under review.
- 4 Hotfiel T, Freiwald J, Hoppe MW. et al. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletz Sportschaden 2018; 32: 243-250
- 5 Hohenauer E, Costello JT, Stoop R. et al. Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage. Scand J Med Sci Sports 2018; 28: 1252-1262
- 6 Ihsan M, Watson G, Abbiss CR. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?. Sports Med 2016; 46: 1095-1109
- 7 Costello JT, Donnelly AE. Cryotherapy and joint position sense in healthy participants: a systematic review. J Athl Train 2010; 45: 306-316
- 8 Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports 2010; 20 (Suppl. 03) 1-18
- 9 Point M, Guilhem G, Hug F. et al. Cryotherapy induces an increase in muscle stiffness. Scand J Med Sci Sports 2018; 28: 260-266
- 10 Minton J. 1992 Student Writing Contest-1st Runner-up: A Comparison of Thermotherapy and Cryotherapy in Enhancing Supine, Extended-leg, Hip Flexion. J Athl Train 1993; 28: 172-176
- 11 Muraoka T, Omuro K, Wakahara T. et al. Effects of muscle cooling on the stiffness of the human gastrocnemius muscle in vivo. Cells Tissues Organs 2008; 187: 152-160
- 12 Price R, Lehmann JF. Influence of muscle cooling on the viscoelastic response of the human ankle to sinusoidal displacements. Arch Phys Med Rehabil 1990; 71: 745-748
- 13 Brandenburg JE, Eby SF, Song P. et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil 2014; 95: 2207-2219
- 14 Hotfiel T, Heiss R, Janka R. et al. Acoustic radiation force impulse tissue characterization of the anterior talofibular ligament: a promising noninvasive approach in ankle imaging. The Physician and sportsmedicine 2018; 46: 435-440
- 15 Heiss R, Kellermann M, Swoboda B. et al. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography. J Orthop Sports Phys Ther 2018; 48: 887-894
- 16 Valderrabano V, Pagenstert G, Horisberger M. et al. Sports and recreation activity of ankle arthritis patients before and after total ankle replacement. The American journal of sports medicine 2006; 34: 993-999
- 17 Hotfiel T, Kellermann M, Swoboda B. et al. Application of Acoustic Radiation Force Impulse (ARFI) Elastography in Imaging of Delayed Onset Muscle Soreness (DOMS): A Comparative Analysis With 3T MRI. J Sport Rehabil 2017;
- 18 Hotfiel T, Kellermann M, Swoboda B. et al. Application of Acoustic Radiation Force Impulse Elastography in Imaging of Delayed Onset Muscle Soreness: A Comparative Analysis With 3T MRI. J Sport Rehabil 2018; 27: 348-356
- 19 Peetrons P. Ultrasound of muscles. Eur Radiol 2002; 12: 35-43
- 20 Bruno C, Minniti S, Bucci A. et al. ARFI: from basic principles to clinical applications in diffuse chronic disease-a review. Insights Imaging 2016; 7: 735-746
- 21 Yavuz A, Bora A, Bulut MD. et al. Acoustic Radiation Force Impulse (ARFI) elastography quantification of muscle stiffness over a course of gradual isometric contractions: a preliminary study. Med Ultrason 2015; 17: 49-57
- 22 Heiss R, Kellermann M, Swoboda B. et al. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography. The Journal of orthopaedic and sports physical therapy 2018;
- 23 Hollerieth K, Gassmann B, Wagenpfeil S. et al. Preclinical evaluation of acoustic radiation force impulse measurements in regions of heterogeneous elasticity. Ultrasonography 2016; 35: 345-352
- 24 Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012; 85: 1435-1445
- 25 Morales-Artacho AJ, Lacourpaille L, Guilhem G. Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling. Scand J Med Sci Sports 2017; 27: 1959-1969
- 26 Bojsen-Møller J, Magnusson SP, Rasmussen LR. et al. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 2005; 99: 986-994
- 27 Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol (1985) 1999; 87: 2090-2096
- 28 Avela J, Komi PV. Interaction between muscle stiffness and stretch reflex sensitivity after long-term stretch-shortening cycle exercise. Muscle Nerve 1998; 21: 1224-1227
- 29 Lichtwark GA, Wilson AM. Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion?. J Biomech 2007; 40: 1768-1775
- 30 Turner AN, Jeffreys I. The Stretch-Shortening Cycle: Proposed Mechanisms and Methods for Enhancement. Strength & Conditioning Journal 2010; 32: 87-99
- 31 Garcia-Manso JM, Rodriguez-Matoso D, Rodriguez-Ruiz D. et al. Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am J Phys Med Rehabil 2011; 90: 356-363
- 32 Heiss R, Hotfiel T, Kellermann M. et al. Effect of Compression Garments on the Development of Edema and Soreness in Delayed-Onset Muscle Soreness (DOMS). J Sports Sci Med 2018; 17: 392-401
- 33 Kellermann M, Heiss R, Swoboda B. et al. Intramuscular Perfusion Response in Delayed Onset Muscle Soreness (DOMS): A Quantitative Analysis with Contrast-Enhanced Ultrasound (CEUS). Int J Sports Med 2017; 38: 833-841
- 34 Vaile J, Halson S, Gill N. et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 2008; 102: 447-455
- 35 Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics 2009; 52: 456-460
- 36 Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci 1999; 17: 231-238